
sZ.q/Z'O'&t 
>-7 

PROGRAM FOR THE SIMULTANEOUS ESTIMATION 
OF DISPLACEMENT AND ORIENTATION CORREC- 
TIONS FOR SEVERAL SHORT BASE LINE ARRAYS, 

by 

"* Robert  R.   Read 

QA 
275 

1985 



£sO&i) te<K> 

PROGRAM FOR THE SIMULTANEOUS ESTIMATION 
OF DISPLACEMENT AND ORIENTATION CORREC- 
TIONS FOR SEVERAL SHORT BASE LINE ARRAYS. 

by 

'* Robert R. Read 

QA 
275 
R42 
1985 



NPS55-85-028 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

TECHNICAL 

PROGRAM FOR THE SIMULTANEOUS ESTIMATION 
OF DISPLACEMENT AND ORIENTATION 

CORRECTIONS FOR SEVERAL SHORT 
BASE LINE ARRAYS 

ROBERT R. READ 

NOVEMBER 1985 

Approved for public release; distribution unlimited, 

Prepared for: 
Naval Undersea Warfare Engineering Station 
Keyport, WA 98345 

20091105012 



ZL1S 
NAVAL POSTGRADUATE SCHOOL 

Monterey, California 

Rear Admiral R. H. Shumaker 
Superintendent 

D. A. Schrady 
Provost 

Reproduction of all or part of this report is authorized, 

This report was prepared by: 

ROBERT R. READ 
Professor of 
Operations Research 

Reviewed by: Released by: 

.  WASHBJRN ALAN R. 
Chairman 
Department of Operations Research 

i^Ar. M 
KNEALE T. MARSHALL 
Dean of Information an 
Policy Sciences 



UNCLASSIFIED  
secoRirv CLASSIFICATION O- THIS PAGE 

REPORT DOCUMENTATION PAGE 
la. R* -ORT SECURITY CLASSIFICATION 

UNCLASSIFIED 
lb. RESTRICTIVE  MARKINGS 

Za. SECURITY CLASSIFICATION AUTHORITY 

2b   OECLASSIFICATION/DOWNGRADING SCHEDULE 

3    DISTRIBUTION/AVAILABILITY OF REPORT 

Approved for public release; distribution 
unlimited. 

4   PERFORMING ORGANIZATION REPORT NUMBER(S) 

NPS55-85-028 
5   MONITORING ORGANIZATION REPORT NUMBER(S) 

64. NAME OF PERFORMING ORGANIZATION 

Naval  Postgraduate School 
60   OFFICE SYMBOL 

(If applicable) 
7a. NAME OF MONITORING ORGANIZATION 

Naval Undersea Warfare Engineering Station 

6c  ADDRESS (Ofy. State, and ZIP Code) 

Monterey, CA   93943-5100 

7b. ADDRESS {City, State, and ZIP Code) 

Keyport, WA 98345 

3d. NAME OF FUNDING/SPONSORING 
ORGANIZATION 

8b. OFFICE SYMBOL 
(if applicable) 

9   PROCUREMENT INSTRUMENT IDENTIFICATION  NUMBER 

8c. ADDRESS (City. State, and ZIP Code) 10   SOURCE OF FUNDING NUMBERS 

PROGRAM 
ELEMENT NO 

PROJECT 
NO 

TASK., 
NO. 

WORK  UNIT 
ACCESSION  NO 

11    TITLE (inciuae Security Classification) 
PROGRAM FOR THE SIMULTANEOUS ESTIMATION OF DISPLACEMENT AND ORIENTATION CORRECTIONS FOR 
SEVERAL SHORT BASE LINE ARRAYS 

12 PERSONAL AUTHOR(S) 

Read, Robert R. 
3a. TYPE OF REPORT 

Technical 
13b   TIME COVERED 

FROM             TO 

14. DATE OF REPORT  (Year. Month, Day) 

1985   Nnvemhpr 
15   PAGE COUNT 

70 
'6   SUPPLEMENTARY NOTATION 

1 7 COSATI CODES 

FIELD GROUP SUB-GROUP 

18   SUBJECT TERMS (Continue on reverse if necessary and identify by block numoer) 

Least Squares, Calibration, Multivariate Estimation, 
Multivariate Regression 

13  ABSTRACT (Continue on reverse if necessary and identify by block numoer) 

This report presents the mathematical support and algorithms for the least square 
estimation of multiple array displacement and orientation corrections. Two situations are 
treated: (i) cross over data collected in the array overlap region; and (ii) matching of 
first principal components straight lines for use when there is no replication of data in 
the array overlap region. Fortran source codes are provided for the first situation. 

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 
QQ UNCLASSIFIED/UNLIMITED    • SAME AS RPT       D DT!C USERS 

21   ABSTRACT SECURITY CLASSIFICATION 

22a   NAME OF RESPONSIBLE INDIVIDUAL 

Robert R.  Read  
22b TELEPHONE (include Area Code) 

(408)646-2382  
22c. OFFICE   SYMBOL 

Code 55Re 
DO FORM 1473, 84 MAR J3 APR edition may be used until exnausted 

All other editions are obsolete 
SECURITY CLASSIFICATION OF  THIS PAGE 





I.  INTRODUCTION 

The methodology presented here is concerned with the cali- 

bration (more precisely, the maintenance of calibration) of a 

three-dimensional tracking system.  The individual sensor arrays 

are the short base line arrays that produce 3-D track for NUWES. 

Our task is to consider the coherence of track produced by two 

arrays in the regions of array overlap.  These regions make the 

continuous tracking of a target achievable.  Thus many arrays may 

contribute to the production of track for a single target and the 

integration of the various track segments provided by the indi- 

vidual arrays is the main problem in the maintenance of calibration. 

An individual track segment produced by a single array is 

described originally in the local coordinate system of that array. 

Such a segment must be transformed to the Range coordinate system 

and integrated with other transformed segments to form a path for 

the target.  These transformations are assumed to be linear and 

require two kinds of input; (i) the location of each array in the 

Range coordinate system; and (ii) the orientation of the local 

coordinate system relative to the Range orientation.  In underwater 

tracking the location and orientation of a local coordinate sys- 

tem must be determined remotely.  It is inferred from synchronously 

timed track segments. 

Each array has four sonar receivers located at four of the 

corners of a rigid cube.  The target is a torpedo (or other 



self-propelled vehicle).  It has a "pinger" attached to it which 

emits a sound wave at regularly timed intervals called point counts. 

The position of the target at a given point count is determined 

from the sound wave's time of arrival differential at the four 

corners containing the receivers.  These signals are transmitted 

over cables to a central computer. 

The functioning of the Range's tracking system requires knowledge 

of the location and orientation of each array.  Moreover, once these 

values are established, they must be monitored regularly to guard 

against slippages of various forms, i.e., calibration must be 

maintained. 

There are a number of instrumentation, measurement and environ- 

mental problems associated with this type of system, but they are 

of no concern in the present work.  Our goal is restricted to 

estimating array positions and orientations.  Mathematically the 

former is a three-dimensional vector and the latter is a three by 

three coefficient matrix that is constrained to be orthonormal, 

that is, a rigid rotation of an array's cube in three space. 

This model for describing the changes in processing the local 

track from an array would be exact if the speed of sound in water were 

constant.  Such is not quite the case.  This speed increases with 

depth and is assumed to be homogeneous in each horizontal layer of 

water.  Because of the depth gradient there is a non-linear correc- 

tion term in the vertical position of the object.  Generally it 

is not very large.  If an array had sunk fifty feet deeper in 

a muddy bottom and a typical speed with depth gradient were used 

then sound ray tracing computations show that the change in 



position of a target some 3000 feet away is within a foot of that 

computed using the linear model.  For NUWES purposes it is safe 

to use the linear model to detect slippage.  If the non-linear 

term were suspected of being important then the estimation 

methodology could be iterated.  That is, the local coordinate 

system could be corrected using the linear methodology followed 

by a recomputation of the target's track.  Then a reexamination 

of the consequences of this could be used to decide whether the 

local coordinate system should be corrected again. 

It will be seen that the corrections estimated for an array are 

not absolute but relative to the other arrays in the system.  Be- 

cause of this it is convenient to assume that the location and 

orientation of at least one array, relative to the Range, were al- 

ready established.  This fact has implications in the calibration 

maintenance problem.  That is, the user places faith in the current 

official positioning of one or more arrays.  Then possible changes 

in the positioning of others are estimated.  If the user chooses 

to change his selection of this "anchor" array, the estimated 

changes for the others must be adjusted mathematically. 

The regions of overlap for two or more arrays will be called 

crossover regions.  Crossover data refers to the tracks (in Range 

coordinates) in the crossover region which are produced by two or more 

arrays for a common set of point counts (i.e., time points).  The 

estimation of array positioning changes is performed by attempting to 

make crossover data agree as much as possible in some global sense. 

We adopt the principle of least squares to serve in this role. 



Experience with the least squares approach has revealed some 

occasional shortcomings.  There exist cases for which the least 

square objective function is a rather flat surface as a function 

of the parameters that describe the changes.  (This has occurred 

only when the number of arrays in a problem is two.)  Since this 

can result in rather large estimated changes a second method, 

called the principal components method, has been developed.  It 

involves the fitting of straight lines to the track segments in 

the crossover region, and this chosen array positions changes 

that will bring these lines together.  It has worked well for the 

cases that cause trouble in the least squares approach. 

A brief comparison of the two methods follows:  The principal 

components method does not require crossover data, i.e., two or 

more versions of track for a common set of point counts.  It does 

require that the two segments of track being matched should be 

straight.  Also, if the data are not literally of the crossover 

type, then one must also estimate the distance between the segments 

being aligned.  The least squares approach requires crossover 

data, but allows the target to be maneuvering in the crossover region, 

The paper is organized as follows:  The second section con- 

tains the development of the least squares method for the simplified 

case of two arrays producing track in a single crossover region. 

The main features of the method can be presented in this setting. 

In the third section the application of these ideas is extended 

to the general case of multiple arrays and a multiple set of cross- 

over regions.  After that we develop the principal component 

method--again treating the two array problem first. 



A Fortran 77 program, KEYMAIN, has been developed to produce 

the correction estimates from crossover data. The source codes 

for this program and all subroutines are contained in the Appendix. 



II.  MATHEMATICAL PRELIMINARIES 

In the formulas that follow z will always be a scalar, A and 

V column vectors, and B a square matrix.  The quantities 3z/3C 

will have the same algebraic structure as C and the elements 

will be the partial derivatives of z with respect to the elements 

of C.  The superscript T refers to matrix transpose.  The 

following formulas are recorded: 

If z = VTA  then  3z/3A =  V (2.1) 

If z = ATA  then  3z/3A =  2A (2.2) 

If z = VTBA  then  3z/3B  =  VAT (2.3) 

If z = VTBTV  then  3z/3B  =  2BWT (2.4) 

Also the trace of a matrix (sum of the diagonal elements) will 

play a major role. If B and C are square matrices of the same 

order, liberal use will be made of the facts that 

Trace(BC)  =  Trace(CB) (2.5) 

and that the trace is a linear operator.  The formulas (2.1) to 

(2.5) can be found in Reference 3, p. 7ff, and they are not 

difficult to develop directly. 

Consider a set of point counts S in a crossover region, and 

let the crossover data (in Range coordinates) be 



xx(t) 

{ x2(t) ) 

x3(t) 

provided by two different sensing arrays.  Let us agree that the 

y(t) data comes from the array whose location and orientation 

are established and our goal is to check the calibration of the 

other array.  In particular, does there exist a 3 vector A ^ 0, and a 

3x3 matrix B (^ I, the identity matrix) such that the adjusted track 

values, 

x(t)  =  A + B x(t) , (2.6) 

are in better agreement with the y(t) than are the unmodified x(t). 

The vector A is related to a displacement of the sensing 

array and the matrix B is related to a correction of its orien- 

tation.  If we let £(t) be x(t) in the local coordinate system, a be 

the location (in Range coordinates) of the array, and B the 

(orthonormal) orientation adjustment to the local coordinates then 

x(t)  = a  +   6C(t) 

and 

x(t)  =  A + Ba + Bg£(t) (2.7) 

The corrected location and orientation adjustments are A+Ba and 

BB, respectively. 



Our immediate goal is to estimate A and B using the principle 

of least squares.  We will minimize the average square deviation 

between y(t) and A+Bx(t) for each point count.  Using the squared 

2    T 
norm notation,  ||v||  = V V, 

Q  =  Ave  ||y(t) -A -Bx(t) || 2 (2.8) 

and, since what follows involves a modification of the standard 

multivariate regression development, let us review an outline of 

the details. 

First, the estimator for A is 

A  =  y - B x (2.9) 

where y = Ave y(t) and x = Ave x(t).  The proof follows from an 
t t " 

expansion of (2.8), namely 

Q = Ave[y(t) - Bx(t) ]T[y(t) -Bx(t)] 
t  ~ 

- 2 Ave[y(t) -Bx(t)]TA + ATA 

to which we apply the rules (2.1) and (2.2), 

|£  =  -2 Ave[y(t) - Bx(t) - A] . 

Set this equal to zero, solve for A and the result follows 



Next, let us make a change and work with the deviations 

Y(t)  =  y(t) - y   and   X(t)  =  x(t) - x (2.10) 

and use (2.9) in (2.8).  The result is a simplified appearance 

for Q, 

Q  =  Ave  ||Y(t) -BX(t) II 2 (2.11) 

Also introduce the covariance matrices 

D   =  Ave{Y(t)YT(t) }    D   =  Ave{Y(t)XT(t) } 
yy      t y      t 

Dxx = Ave^(t)XT(t) } 

(2.12) 

Now the customary estimator for B can be derived readily.  Thus 

Q  =  Ave{YT(t)Y(t) -2YT(t)BX(t) +XT(t)BTBX(t)} (2.13) 

and use (2.3) and (2.4) to get 

|§ =  -2 Ave{Y(t)XT(t) -BX(t)XT(t) } 
9B        t 

"  "2{Dyx - BDXX} (2.14) 

r1 
XX 

which is the usual multivariate regression estimator, Ref. 1, p. 181, 

using (2.12).  Set this equal to zero and solve for B = D  D 3 ^ yx xx 



Generally, the above usual estimator is not the one we should 

use.  Recall that the sensing arrays are rigid cubes.  If they 

have slipped (i.e., moved physically such as by the action of a 

ship's anchor hooking a cable) then they undergo a displacement 

and a re-orientation.  The matrix B should be orthonormal as is 

the matrix 3 in the original calibration.  Thus 

BTB  =1 (2.15) 

and the estimation of B involves the minimization of Q subject to 

the constraint.  The usual estimate would be useful only if there 

were physical damage to an array, resulting in its behavior as a 

skewed rather than Cartesion system. 

Use of (2.15) and (2.12) in (2.13) allows the rewrite 

Q =  Trace{Dyy - 2DyxB
T + DxX} (2.16) 

and the minimization of Q is tantamount to the maximization of 

W =  Trace{D  BT}   subject to (2.15) (2.17) yx 

since the trace is a linear operator and B is involved only in 

the second term of (2.16).  The solution of the optimization 

problem (2.17) and its generalization in Section 4 is the bulk 

of our effort. 

Earlier was stated the need for placing faith in the location 

and orientation of at least one array, because otherwise the 

10 



solution could not be unique.  Let us show now, using analysis, 

why this is the case in the two array, single crossover region 

problem.  Suppose we tried to adjust both data sets, i.e., 

y(t) =    Ai  +  Bi^(t)    and 

(2.18) 

x(t)  =  A2 + B2x(t) 

when both B, and B2 are constrained to be orthonormal.  The least 

squares objective function has the appearance 

Q  =  Ave ||A1+B1y(t) -A2 -B2x(t) || 2 (2.19) 

It is clear from the development of equation (2.9) that the dis- 

placement portion of the optimization can be estimated only 

relatively.  That is, only A = A_ - A-, can be found uniquely. 

From the earlier development we can infer that A = B,y - B^x 

and re-express the objective as 

Q(B1,B2)  =  Ave ||B1Y(t)-B2X(t) || 2 (2.20) 

But this is the squared lengths of a set of vectors which have 

been averaged.  Since the squared length of any vector is invari- 

ant under any orthonormal transformation, say C, it follows that 

Q(B1,B2)  =  Q(CB1,CB2) 

T 
In particular we can take C = B, (i.e., the inverse of B-.) and 

T then Q(B-,,B2) = Q(I,B ).  The product of orthonormal matrices 

11 



T is itself orthonormal.  We can set B = B,B- and note that the 

minimization of Q(I,B) is that of (2.11), the problem we are 

treating.  The geometrical interpretation is that the orientation 

of a sensing array can be matched only relatively to the other 

array.  It is convenient to assume that the latter orientation 

is known. 

12 



III.  SOLUTION ALGORITHM 

The matrix B has nine elements, but because of the constraint 

(2.15) there are only three degrees of freedom.  That is, there 

are three length constraints and three orthogonality constraints. 

The three remaining degrees of freedom can be expressed in terms 

of the Euler angles, Ref. 2, p. 250 ff. 

Any orthnormal transformation in 3-space may be viewed as the 

application of three successive rotations, i.e., hold the x,-axis 

fixed and execute a rotation in the x?-x.. plane; then hold the 

x--axis fixed in its new position and rotate in the x,-x plane; 

and finally rotate in the x,-x„ plane with the x_-axis held fixed 

in its new position.  Denote the angles of these three rotations 

as <J>, , <j>2 / <J>3«  In navigation work they are called roll, pitch 

and yaw.  These angles are unique only when the order of applica- 

tion of the rotations is specified. 

To shorten the writing, let 

c-  =  cos(<J>-)   and   s.  =  sin(<J>.) (3.1) 

for i = 1,2,3, and the individual planar rotations can be expressed 

as 

'"1 ;i  ci ) 

0   -s2 

pl      \  °   Cl  "Sl I'   p2  =  { °    1        ° 
0   c2 

13 



P3  = \  s3 
l 
C3 

and, using the order of application described, let 

B  =  P3P2Pi (3.3) 

We make liberal use of the fact that the product of orthonormal 

matrices is itself orthonormal. 

We note in passing that the matrices B. above are the trans- 

pose (and hence inverses) of those that are usually used in 

studying the motion of aeroplanes, Ref. [2].  Also the order of 

application is the reverse of the customary one thus making B in 

(3.3) the inverse of the usual matrix.  This choice is appropriate 

for our work since the angular correction will rotate the local 

axes back to where they are expected to be. 

This done our optimization problem may be stated as 

T 
Maximize Trace{D  B } (3.4) 

The solution can be found by treating the problem as three 

successive two-dimensional problems.  To do this let us first 

characterize how this optimization problem would be solved if 

the tracking took place in two dimensions. 

In the plane, an orthonormal matrix B has one degree of 

freedom and it is characterized by a rotation through an angle 4> 

14 



As before,   let c = cos{<t>) ,   s =  sin(4>)   so  that 

!c       -s 

s c 

and 

W    =     Trace(DBT)      =      (D1±+D22)c+   (D2i"
Di2(s) (3,5) 

Thus W  is  itself  a  sine wave.     It has  one max and one min, and  these  are 

separated by  TT  radians.     Since 

W     =     ~(Dn  +D22^S  +   ^D21~D12^C       and 

W"     =     -(D11+D22)c  -    (D21-D12)s 

it  is  seen easily  that  the max occurs when 

s     =     K(D21 -D12)    , c     =    K(D1]L +D22)    ,     and 

2 2   -1/2 

K     =     {(D21 -D12)      +   (Du+D22)    } 

(3.6) 

This would be the solution if the tracking problem were a two- 

dimensional one. 

Now we are positioned to treat our three-dimensional tracking 

problem.  Introduce matrices 

rp  rn m       rn m  m 

E  =  D  p,p0   F  =  p0D  p.   G  =  p0p0D (3.7) yxKlK2 H3  yxKl M2K3 yx 

15 



and note that, using (2.5), (2.17) and (3.3), 

T T 
W = Trace{D B } =  Trace{Ep3> 

T T = Trace{Fp2> = Trace{Gp,} (3.8) 

These latter three representatives of W allow us to use our 

knowledge of the solution to the two-dimensional problem.  When 

these three traces are written out in expanded form and compared 

with (3.5) and (3.6), it is seen that the optimal solution for 

<}>, , <j>2, <}>., must have the form 

s3  =  K3(E21-E12)   and   c3  =  ^(E^+E^) 

s2     =     K2(F31-F13)        and       c2     =     K2
(Fll+F33) (3'9) 

Sl     =     K1(G32-G23}        and       Cl     =     K1(G22+G33} 

where 

2 2   _1/2 

K3     =      UE21-E12)      +    (E11+E22)    } 

2 2   "1/2 

K2      =      {(F3l"F13)      +    (F11+F33)    } (3.10) 

2 2   "1/2 

Kl     =      {(G32 -G23}      +   (G22+G33}    } 

16 



The above does not provide explicit solutions because 

E = E (<j), ,<f)2) , F = F((f>,,<J>3) and G = G ((|>2 f <J>3) .  It is necessary to 

get all three angles satisfying (3.9) and (3.10) at the same time. 

This means in addition that 

VW =  0 (3.11) 

as well.     We know that  each of  the  equations 

T 
aw 9p^ 
4T~    =     Trace E —=•    =     0 
d<{>3 ^93 

T 
dW dp2 ~-    =     Trace  F ^—=-    =     0 (3.12) 
a <p~ a <p~ 

T 
P>w 3 P -i 
|5-     =     Trace   G ^     =     0 d01 dfj^ 

has   two  solutions,   one  max  and  one  min.      It   follows   that   (3.11) 
3 

has eight (2 ) solutions, one for each of the permutations of the 

component solutions, and this means one max, one min, and six 

saddle points.  We require an algorithm that converges to the max. 

This can be achieved with an iterative process.  Take an 

arbitrary beginning set of values for 4>, , <)>_, <J>_.  All <J> . = 0 

will do.  Compute E for this choice and then compute a new <j>_ 

from the first member of (3.9).  Use this value and the original 

0, to compute F and from this compute a new <J>_ from the second 

member of (3.9).  Next use these new values for 4>~, $~   and 

compute G, followed by a new <K from the third member of (3.9). 

17 



This completes one cycle.  At each step the appropriate member 

of (3.12) was satisfied and with a max.  The value of W increased each 

time. Moreover, a second cycle beginning with the values t}>, , <t)_,and <p-. 

from the first cycle would produce a further increase in W.  We 

know there exists a unique maximum for W and we have an iterative 

method that increases W at each step.  It follows that, by 

repeating the process, we can come arbitrarily close to this 

maximum and that will be signaled when all three members of (3.12) 

are negligibly small in magnitude. 

In order to develop intuition that may be useful in under- 

standing the more complicated optimization process addressed in 

Section 4, let us take pause now and make a heuristic interpreta- 

tion of our iterative process.  The objective function W is a 

sine wave as a function of each angle <j). (with the other two 

angles neld fixed).  As such it is concave in half of this restricted 

angular domain.  It follows that in the full three-dimensional 

space of ((f)-, / tj>2, 4>-J the function W is concave in one eighth of its 

domain.  A more general (and perhaps more rapidly converging) 

gradient search algorithm should begin in this part of the 

domain so that when convergence takes Dlace, it is toward a 

maximum.  If the algorithm presented is used, one does not have 

to worry about this point. 

We note in passing that the above technique is not limited 

to three dimensions.  Suppose that our tracking problem was in 

p dimensions and that B was a p *p  orthonormal matrix.  This 

2 
constraint reduces the degrees of freedom, p  in B by p for the 

18 



length constraints, and by an additional p(p-l)/2 for the 

orthogonality constraints.  Since 

p2 -p -p(p-l)/2  = p(p-l)/2 

we see that p(p-l)/2 is the number of angles (or equivalently, 

product matrices in the analogue of (3.2)) of rotation in B. 

I.e., it is the number of ways we can choose p-2 axes (from p 

axes) to be held fixed while a rotation takes place in the planes 

remaining.  The solution structure will have one max, one min, 

and 2-2 saddle points.  Our iteration technique will converge 

to the max. 

19 



IV.  GENERAL CASE 

To treat the general case we must consider several arrays, say 

K in number, and several crossover regions.  Also we must allow for 

the target to be tracked in a given crossover region either not at 

all, exactly once, or more than once since it may maneuver back 

into a given region during a later point count set.  Finally the 

target, during a given point count set in a given crossover region, 

may be tracked by more than one sensing array.  We proceed to develop 

a notational structure that can handle this fully general case. 

Let SwS2,...,SR represent a collection of R point count sets. 

It is convenient to assume that to each individual S  (for 

s = 1,...,R) there is associated a pair or more of sensing arrays. 

Thus, if only one array tracks the target in a particular crossover 

region there will be no corresponding point count set in the collec- 

tion.  If exactly two arrays track the target then the particular 

S  is well defined.  If three or more arrays track the target at 

about the same time, then things become a little fuzzy because the 

point count set for one pair of arrays may not be exactly congruent 

with the point count set of the crossover data of one of the two 

arrays with a third array, etc.  This possible lack of congruence 

does not affect the computation of the cross covariance, (2.12) as 

they appear only in pairs.  So there is no harm in allowing the sets 

S,,...,SR to duplicate some segments of track.  When such duplication 

occurs however, the array pairs must be distinct. 

Next, for i = 1,...,K, let C- be the subcollection of 

S-,,...,S  which has tracking data from the i— array.  In this 

20 



way we can identify a 3-dimension vector of track data, X.(t,s), 

as being produced by the i— array at point count t which belongs 

to S .  These quantities exist only if S  e C-. 

Our goal is to estimate the displacement and re-orientation 

parameter pairs for each of the K arrays.  Earlier, with K = 2, 

we learned that there is an identifiability problem and it was 

convenient to assume that the location and orientation of one 

of the arrays was fixed.  The same is true in the general case 

(i.e., only one array is fixed) provided that the data satisfy a 

connectivity condition.  This condition can be described in the 

parlance of graph theory.  The K sensing arrays form the nodes. 

An arc exists between two nodes if crossover data exists between 

them.  We wish to consider only connected graphs.  What this 

means is:  There is no partition of the nodes into two non- 

empty sets such that an arc cannot be found connecting a node of 

one set to a node of the other set. 

If this condition of connectedness is not satisfied by our 

problem, then the overall data must be decomposed into smaller 

sets so that it does hold for each subset.  Such decompositions 

are unique and each member of the decomposition is to be treated 

separately.  This done we can fix our analysis on the case that 

involves a connected graph.  Here it will be seen that the estima- 

tion of all displacements and re-orientation parameters will be 

unique once that one set (i.e., a set corresponding to a given 

array) is specified. 

Our notation needs to be expanded.  Let X.(t;s) be the 3- 

. th 
dimensional track, in range coordinates, produced by the 1— 

21 



array at point count t belonging to S .  Our goal is to estimate 

the location vectors A. and re-orientation matrices B. so that 

(compare (2.6)) 

x^tf-s)  = Ai + BixL(t;s) (4.1) 

are as compatible as possible with the overall track of the 

target in the range.  Also let x.(s) be the vector of averages 

of the x.(t;s) taken over t in S , and 

Xi(t;s)  =  Xj^tiS) - xi(s) (4.2) 

be the deviations from the mean.  Our new objective function can 

be expressed as an extension of (2.19) 

= I   I   I  N Ave  ||B.X.(t;s) - B.X. (t; 
i<j s J J 

s) II 2      (4.3) 

where the outer double sum is over 1 <_  i < j _< k, the inner sum 

is over s e C-nC, and the average is to be taken over t e S . 13 s 

The weights N  = number of point counts in S  for the array 

pair (i,j) . 

We can view (4.3) as 

Q  -  Q(BlfB2#...,B ) (4.4) 

and, because of the connectedness assumption, (4.3) cannot be 

decomposed into the sum of two terms 

22 



Q, (B. ,...,B. )   and   Q9(B. , ...,B  ) 

for which the subscript sets i.,...,i  and j. ,.••»]  form a r i'      p      J±' ->r 

partition of 1,2,...,K.  Now we can reformat the argument used 

at the end of Section 2.  If C is any orthonormal transformation 

then Q(CB1,CB2, . . . ,CB ) = Q (B1, . . . ,BR) .  Using C = B, , say, then 

Q(B1,...fBK)  =  Q(I,B^B2,...,B^BK) (4.5) 

and, for convenience, it is assumed that the orientation of the 

first array is known, i.e., B, = I in (4.3). 

Define covariance matrices 

Di.(S)  =  Ave{Xi(t;s)X?(t;s)} (4.6) 

where the average is taken over the point counts t in S . 

These quantities exist only for s e C-nC. ?  0.  Then (4.3) may 

be expanded to the more useful form 

Q  =  Trace £ I   I  N {D . (s) -2D..(s)B^Bn +D..(s)} (4.7) 
i<j s 1J    :     DJ 

and again, because the unknown matrices {B,} appear only in the second 

term, we may choose to maximize 

W =  J 7 Trace{D. .B.B. } 4.8 
i<1       • J J 

23 



for 1 <_  i < j <_ K and 

D..  = I  N D..(s)  or zero (4.9) 
iJ    s s ij 

according to whether the summation for s e C n.C. has content, 

or is empty. 

A word about the computation of D.•(s) in (4.9).  It seems 

wise to use the pooled within groups covariance in those cases 

for which S  is the union of rather diverse point counts.  An 

example should make the point.  Suppose the array pair (i,j) 

tracks the target at point counts {1,...,25} and also {86,...,135} 

The pooled within groups covariance would compute the two covari- 

ances separately and then combine them into one using a weighted 

(by sample size) average.  In our example, the weights would be 

25/75 and 40/75. 

For each fixed value of r (r = 1,...,K) the right hand side 

of (4.8) contains an expression of the form 

T T 
W  =   >  Trace{D. B B.} +  )  Trace{D .B.B } r     i^r       ir r i'   .. ^ rj j r 

=  Trace! J_     B D  B^ + J     DriBiBr} (4.10] 
i<r j>r   J J 

To shorten the writing let 

E   =   J  B.D.     and    F   =   J  D .B1 (4.1i; 
r     . L        l ir r     .'•   r] i 

i<r   , j>r   J J 

24 



mm T T 
and use the fact that Trace{F B } = Trace{B F } = Trace{F B } 

Then 

Wr  =  Trace{(Er +F^)B^} (4.12) 

Also it is interesting to note that each term of (4.8) appears 

in two and only two distinct W .  It follows that 

iW.  =  2W (4.13) 
1  r 

Now the vector of partial derivatives of W with respect to the 

three Euler angles in B , that is <J> , , <J) „, <j> 3, is the same as 

the gradient of W  (with B,,...,B  ,,B  ..,...,B, held fixed). 

Moreover, the structure of (4.12) is the same as that of (3.4). 

We know from Section 2 that VW  has eight zeros, exactly one of 

which corresponds to a max, and we have an algorithm that converges 

to that max. 

The analysis above leads to the construction of a gradient 

search that can ferret out the max of W.  To fix one array we set 

B-, = I and keep this throughout.  Choose starting matrices for 

the set B2,...,B .  Compute E  = E (B,,...,B _,) and 

Fr = Fr (Br+l'* ' * ,BK) for each r = 1>2'- — 'K  <Ei -   ° E FK> '  Use 

the algorithm in Section 2 applied to (4.12), for each r, to 

produce the new Euler angles, i.e., the system {B }.  Use these 

to recompute the {Er'
F
r^ 

and repeat.  Stop when the gradients 

of all Wr are sufficiently small in magnitude.  Each W will 

25 



be at a loca] maximum for its argument B with all of the other 

orientation matrices held fixed. 

There are some open questions about the convergence proper- 

ties of this algorithm.  From an empirical point of view it has 

appeared to work successfully.  Convergence is not monotone how- 

ever.  In none of our test problems have the {B.} departed notably 

from identity matrices, and the use of all B. = I to initialize 

the algorithm has provided satisfactory results.  For one run 

the initialization was chosen at random (in the 3(K-1) dimensional 

space of Euler angles) and the time to convergence was excessive. 

We know that W has many saddle points and that it is a concave 

function in only a small part of its domain. 

Methods for initializing the algorithm need to be developed. 

The following idea may hold some promise:  Referring to each 

term of (4.8) , 

Trace{D..BTB.}  =  Trace{D..B.T}, 13 3 1 13 13 ' 

T 
where B*. = B.B., the solution algorithm of Section 3 can be 

used to check whether B?. is near to the identity.  If so, 13 * 

initialize all B, = I.  If not, then study of the resulting {B* . } 

may lead to a good selection. 

Let us return to the objective function Q of (4.3) and use 

(4.1) in it for purposes of estimating the location parameters 

{A }.  Formally we have 

Q  = I   I   I   Ns 
Ave  HAi +Bixi(t;s) -A. -B x. (t;s) || 4 (4.14) 

i<j s ~ J       J~J 

26 



where 1 < i < j < K; s e C • nC.; the average is taken over the 

points counts t in S ; and N = number of point counts in S , c s      s c s 

Again it is useful to use terras 

Q   =   I      I  N Ave llA.+B. x. (t;s) -A -B x. (t;s)||2 

r     .LLs            "i  i~i       r  r-i     " i<r s 

+  y l   N Ave ||A+B x(t;s) -A, -B. x. (t;s) || '        (4.15) 
j<r s  S       r  r~r        J        :l~':, 

K 
and recognize that I     Q  = 2Q.  In a manner similar to the one 

r=l  r 

that produced (2.7) we can develop 

3Q. 
-  =  -2  y  J N {B- x. (s) -B x (s) - (A -A. ) } . L      L     si~i      r~r       r   l 3A r        i<r s 

+   2      I      I   N {B x (s) -B.x (s) -(A.-A^.)} 
j>r s  s  r~r     J^11       J     r 

(4.16) 

Setting (4.16) equal to zero results in a 3.K linear system in 

the A, / .. . ,A„.  Let H. . = [ N  for s e C. n C • .  Then the left 1      K       i] '-  s         lj J s 
hand side of the linear system is 

-   y  M.A.+iy  M.  +y  M.}A  -   >M.A. • i       ir i   .'-   lr .{•       ru  r   .L      ri n i<r        i<r     j>r   J      ]>r  J J 

and the right hand side is 

(4.17) 

27 



y  B.  I   N X (s) +  y  B.   N X (S) 
. •   1 L      S ~ 1       . '-•   1    S ~ j i<r    s n>r  J s    J 

- B„{ I     I  N X (S) + I     I  N x (s)} (4.18! 
i<r s  &~r     j>r s  s~r 

Notice that the coefficient matrix in (4.17) is the same for all 

three components of the {A }.  Also the columns of the matrix 

add to zero so that its rank is K-l.  It follows that the system 

is underdetermined.  We anticipated this.  Setting A-, = 0 will 

allow a unique solution for A„,...,A^.  Of course, this choice 

corresponds to the assumption made earlier that the location and 

orientation of the first array is known. 

28 



V.  PRINCIPAL COMPONENTS METHOD 

Experience with the least square method (two arrays, Section 

2) in the area of underwater tracking has revealed some instabili- 

ties.  Several cases were identified in which the surface W con- 

tained some rather extensive relatively flat regions as a function 

of the three Euler angles.  More specifically, it is possible to 

move from the maximizing point to a saddle point and lose less 

than one percent of the value of W.  Moreover the effect of using 

the maximizing point can be to assign an absurd relocation geometry 

to the position of the sensor (e.g., turned upside down and sus- 

pended without support somewhere in, or above, the water).  In 

these cases use of the saddle point involved only minor relocation 

of the sensor.  Clearly this is an unsatisfactory state of affairs. 

These anomalies can happen, and there is not yet any fully 

reliable way to identify the conditions under which they may 

occur.  They seem to be related to the inherent variability of 

the tracking data coupled with the point by point crossover data 

matching approach utilized by the least square methodology.  It 

may be that certain naturally occurring geometric conditions 

(e.g., straight line structure of track) may act as a catalyst 

for this phenomenon. 

An alternative methodology has been developed and it appears 

to avoid producing the absurd solutions mentioned above.  It is 

based on the matching of the first principal components of the 

covariance matrices of the tracking data. 

29 



Let us take a moment to describe the notion of first princi- 

pal component.  Suppose we want to fit a segment of straight 

line to a track of data {x(t);t eS}.  Further suppose we use the 

minimum sum of squared projections (orthogonal) as the mathemati- 

cal criterion for choosing the line.  The solution is well known 

(Ref. 1, p. 272 ff).  Let X  be the largest eigenvalue of the 

covariance matrix D  and let q be an eigenvector associated with XX 

A.  That is, any solution of 

Dxxq  =  Aq (5.1) 

The following facts are stated without proof: 

(i)    The vector q is a set of direction numbers for the 

desired straight line, 

(ii)   The line passes through the centroid x. 

(iii)  The projected track of x(t) onto this straight line 

T 
are the scalar values u(t) = q x(t). 

These properties can be exploited for our current problem in 

the following way.  Let p be a first principal component for D 

and q play the same role for D  .  Both are assumed to be scaled 

to have length one: 

V  2     !     V  2 

I  Pi  -  1 - I  q± 

Adopt as the optimizing criterion:  Choose B orthonormal so that 

p  -  Bq (5.2) 

30 



That is, the re-orientation matrix is chosen so that the two 

fitted straight line segments have the same direction numbers. 

It appears that the mathematical problem, p = Bq, is most 

easily solved using a constructive method.  If p = q then B = I. 

Barring this, proceed as follows: 

1) Let 8 be the angle between p and q. 

2) Form an orthonormal basis H = {h,,h„,h } such that h, = q; 

h2 is in the plane of p and q but orthogonal to h,; 

h., completes the basis. 

/ 2 
3) Letting c = cos(9) and s = vl -c , we can use the Gram 

Schmidt process and take 

h    =   IcmcRl 
2        s 

4)  Notice that 

Hq I 0 )  and   Hp  =  Is) W W 
and that Hp can be rotated through an (Eulerian) angle 

T 
0 into Hq by applying the matrix p., (6), see (3.2). 

5)  Since p-,Hp = Hq and both p.. and H are orthonormal matrices, 

T T 
it follows that p = H p3Hq.  Thus 

T T 
B  =  H P3H (5.3) 

Notice that this method does not require crossover data in 

the strict sense, i.e., matched pairs of track from two arrays 

for a common set of point counts.  The matrix D   is not needed c yx 

31 



and D  and D  can be computed without this requirement, yy     xx 

However the stability of the principal components p and q 

require that the two pieces of track be rather straight, i.e., 

no curvilinear bias. 

If the input data are not crossover data, there must be an 

adjustment in the way that we estimate the displacement parameter 

A.  The formula (2.9) will not be valid because the x and y 

values do not refer to the same time (i.e., point count).  Our 

immediate goal is to estimate the distance 6 traveled by the 

target from its mean position y at some time t to its new esti- 

mated position A +Bx at some later time t .  Let us assume that 

the two point count sets (one for the {y} and one for the {x}) 

are mutually exclusive and represent equally spaced time values. 

Since the target's path is straight we can average the times in 

the two point count sets to obtain values for t  and t .  Then c y     x 

one can form the sets of projections 

u(t)  = qTx(t)      and     v(t)  =  pTy(t)        (5.4) 

and use their successive differences to get an estimate of the 

target's speed. 

The distance 6 will be the speed multiplied by the time 

increment t - t . x  y 

This done, it is claimed that 

A  =  y - Bx + 6p (5.5; 

32 



Proof:  The lineal distance 6 can be represented as 

T    — — 
p (A + Bx -y)  =  6 

T     T —  — 
from which it follows that p A = p (y -Bx) + 6.  We can view p 

as the first column of a seld adjoint matrix P, and letting 

T 
6 = (6,0,0)  we can express our equation in the form 

PTA =  PT(y -Bx) +  6 (5.6) 

From (5.6) it follows that A = (y -Bx) + P6 and this is the 

same as (5.5). 

It should be noted that the principal components method could 

have been used in place of the least squares approach.  Having 

crossover data in hand does not preclude its use.  Thus t = t c y    x 

and 6 = 0 in (5.5).  We can modify the objective function Q of 

(2.11) and get a perfect fit, i.e., because of (5.2), 

0  =   ||p -Bqj|    =  p p - 2p Bq + q q 

=  2-2 Trace{pqTBT} (5.7) 

and the Trace factor of (5.7) is unity. 

With the above in mind let us turn to the question of extend- 

ing the principal components method to several arrays and 

several crossover regions.  It is simpler if we have crossover 

data so let's describe that situation first. 

33 



The notation is the same as in Section 4.  Let q.(s) be 

the first principal component of D.-(s) (see (4.6)).  The 

orientation changes {B.} will be selected first by minimizing 

Q     •     IJI   llqiUJBi-qJwBJI2 

i<j   s J J 

= I   l   H2~2 Trace [q± (s) q^ (s) BTB.] } (5.8) 
i<j s      . J   J 

and the summations are for 1 <_ i < j _< K and s e C- nC. 

before, this is tantamount to maximizing 

As 

W  = I   I   Trace{Di.B^Bi}   with   D..  = I   qi(s)q^(s)    (5.9) 
i<j        J J J     s       J 

Since this has the same structure as (4.8), the same solution 

algorithm can be used.  Also the system (4.17) and (4.18) can be 

used to obtain the {A.}. 

The procedure changes a bit when the data are not of the 

crossover form.  That is, when we are splicing together segments of 

track and there are no overlaps.  One might liken this problem 

as being similar to putting in water pipes in a large building. 

Several subcontractors have put in their pipes and our job is to 

connect it all up.  The pieces must be moved so that the ends 

butt up against one another. 

With this view, we need a change in terminology.  Let 

S,,...,SR represent the crossover points, or connection points. 

To each S  there corresponds two arrays, i.e., an unique (i,j) 

34 



pair.  Let T. (s) and T- (s) be the point counts that produce the 

data.  It is assumed that they do not overlap.  Each is suffi- 

ciently extensive so as to provide stable estimates for the 

covariance matrices D..(s) and D..(s), yet not so extensive as 

to compromise the assumption that the target is moving in a 

straight line while in the point counts neighboring the connec- 

tion.  This done, we can input equation (5.9) and use the algorithm 

of Section 4 to estimate the {B-}. 

It remains to estimate the {A.}.  To do this the technique 

preceeding equation (5.5) needs to be expanded.  With more than 

two arrays involved, the objective function Q of (5.8) will not 

be zero.  This means that our reoriented segments of track will 

not share an exact common line at the connection points.  With 

this possibility in mind we introduce some further quantities. 

To each of the sets T-(s) and T•(s) adjoin  (if necessary) a 

common time value (or pseudo point count) t.-(s) which will serve 

as the connecting time.  Let t.(s) and t.(s) be the average 

values of T-(s) and T.(s) respectively.  For convenience it is 

assumed that the former preceeds the latter; t-(s) < t.(s).  The 

corresponding pre-adjusted positives are x-(s) and x.(s).  Esti- 

mate the target's speed in the same array as before and use it 

to compute the distances: 

6.(s)  =  distance traveled from t^(s) to t.-(s) 

6-(s)  =  distance traveled from t.•(s) to t.(s) 

35 



These will be used in our immediate goal, namely, to take the 

linearly adjusted pieces of track 

Xj^^-s)  =  Ai+Bixi(t;s) 

(5.10) 

Xj (t;s)  =  A- +BjX. (t;s) 

and model the differences A- -A. in terms of the 6.(s), 6.(s) 

and other known quantities. 

In continuing, let us drop the argument s from the notation. 

Again we can use the eigenvectors, q•, to project the track to 

an axis so we can measure the distances. Specifically, write 

qfx.(t  ) - qJ[Ai+B.X.]  =  5. 

q^[Aj+BjXj]    -   q^Ctij)      =      5. 

(5.11) 

Although we don't know how to compute x- (t. •) and x-(t. .) they 

both represent the position at the connecting point, 

Xjtt.-i) = x-:(t..).  Next rewrite (5.11) as 

T        T~ T  — 
q.A.  =  q.x.(t.•) - q.B.x. + 6. 

T        T~ T  — 
q.A.  =  q.x-(t..) - q.B.x. - 6. 

Then apply the same technique as used in the proof of (5.5) 

The result is 

(5.12) 

36 



Aj - Xj'V " Vj + V: 

A.  =  v.(t..) -B.v. -a.6. 
1     xxv 131    ixi   4i 1 

(5.13) 

The unknown quantities x-(t..) will cancel when we take 

differences.  Let us restore the s to the notation and record 

the result. 

A^ -Ai  =  B^ts) - BjX.(8) + 6j(s)qj(s) + 6i(s)qi(s) 

(5.14) 

The system (5.14) is overdetermined and has no solution.  Let us 

develop the least squares compromise.  To shorten the writing let 

g--(s) represent the right hand side of (5.14).  Many details 

will be omitted because we follow the pattern at the end of 

Section 4. 

Let 

Q    -     I   I   I  IIAi -A.  -g.,(s) || 2 (5.15) 
i<j   s       J J 

and 

)    =   j y j ii A -A. -g..(s)M2 + y y y n A . - A -g . (s) 
•r L.L   L   "   r       I       in        '' L. J-   L   "   i       r       ri i<r  s J n>r  s        J J 

Then 

37 



|§- = l l  HA -A. -g. (s)} 
8Ar    i<r s  r  x  ir 

" I I IU. -Ar~g  (s)} (5.16) 
j >r s  J       J 

which is set equal to zero for each r = 1,...,K.  Let n • . be 

13   s 
the number of (i,j) connections that exist, i.e., n-^   = I   1, 

and proceed.  For r = 1,...,K we have the system 

I     nirA±  + A { J     nir + I     n^}   -   J     nrjA 
i<r i<r      j>r  J j>r       J J 

I I gir(») - I I griU) (5.i7) 
i<r s j>r s   J 

and the g. (s) and g •(s) can be found from the right side of 

(5.14).  As before, the columns of the coefficient matrix add to 

zero and the rank of the system is K-l.  We set A, = 0 (i.e., 

the location of the first array is assumed known) and solve. 

38 



REFERENCES 

T.W. Anderson, An Introduction to Multivariate Statistical 
Analysis.  New York:  John Wiley & Sons, 19 58. 

R.A. Frazer, W.J. Duncan, A.R. Collar, Elementary Matrices. 
New York:  MacMillan, 1947. 

F.A. Graybill, An Introduction to Linear Statistical Models. 
New York:  McGraw Hill, 1961. 

G. Gygax, "The Simulation of Remotely Measured Paths of 
Underwater Vehicles for the Purpose of Monitoring the 
Calibration of Test Ranges," Master's Thesis, USN Post- 
graduate School, September 1985. 

D.W. Marquardt, "An Algorithm for Least Square Estimation 
of Nonlinear Parameters," Journal of the Society of Industrial 
and Applied Mathematics, Vol. 11, No. 2, June, 19 63. 

R. Read, "Analysis of Tracking Data," USNPS Technical Paper, 
NPS55-83-031PR, October 1983. 

39 



APPENDIX 

40 



<: = 

CJ 

o 
cs: 

5   —    g 

X 
•a: 

«T * 
i— CO 

o  1 
^2 3 
h- 

3 o 
CD CI 
ac CO 
CO 3 
=5 L^ 
LO 

Cfl 
C_3 z 
zr 1—1 

i—i  1 
 i  1 
 i < < u 
(_> 

o 
2: 

o h- 
<c 

«rT 
 1 X 

< :r> 

CO UJ 
LU <_> 
(_) < 
<: _) 
_i a. 
Q. 

as LU 

O 

a a 

41 



C PROGRAM KEYMAIN 
C 
C a************************************************************** 

C ***  This serves as a main program to call the subroutines  *** 
C ***  used to estimate the sensor array displacements and    *** 
C ***  the array re-or1 entation angles for the  Keyport ranc,e *** 
C ***  calibration project.  It reads 1n data from a disk     *** 
C ***  file specified by the user. It prompts the user for    *** 
C ***  this data and for sensor array I.D. information.       *** 
C ***  -- 26 August 1985                                     *** 

C 
C ...  Declare all integer variables: 

INTEGERM IND2(2,30), IND1(30,30), Rl, NUMREC, I, J, IDL, 
2 K, IA(30), TESTC, NSH30), IND(30,30), R, NS(30), 
3 FF(30,30), IK, KM, IDR, IND2R(2,30), DATSEK30), 
4 CHOICE, OUT, IN 

C 
C ...  Declare all real variables in double precision: 

REAL*8 AA(200,6), CROSSA(30,3,3), MEAN(30,6), DEV(30,3,3), 
2 XB(30,6), EP, B(30,3,3), BB(3,3), XBB(30,6), A(30,3), 
3 DEL (30,3), D(30), POO), C(3,3), RM(6), PP, E A (3 0,3) 

C 
C ...  Declare the character variables: 

CHARACTER DSNAME*13, ANSWER*3 

C 

c 

LOGICAL EXST 

PARAMETER(0UT=6,IN=5) 

WRITE(OUT,*) ' This is a user friendly program. Hellc !!. ' 
WRITE(0UT,») '   ' 
Rl = 0 

C 
C       ... The IND2 and IND2R matrices serve to store arrciy ^eir- 
C identification information and relate it to the in^ut 
C (six column) crossover' data sets. 
C       ... Initialize IND2 and IND2R matrices to zero: 

DO 30 I = 1,2 
DO 30 J = 1,30 
IKD2(I,J) = 0 
IND2R(I,J) = 0 

3 0     CONTINUE 
C 
5      WRITE (OUT, *) ' Please enter the nai,.e of the data set   on <jisk: 

C 
C       ...  Rl counts the number of data sets input by the user'. 

Rl = Rl + 1 

42 



READCIN, ' (A) ') DSNAME 
C       ... Check to make sure data file exists: 

INQUIRE(FILE=DSNAME,EXIST=EXST) 
IFC.NOT. EXST) THEN 
WRITECOUT,*)' The file does not exist.' 

9 WRITECOUT,*)' Do you want to (1) try again cr (2) abort?' 
•  .   READdNt*) CHOICE 

IF(CH0ICE .EQ. 1) THEN 
Rl = Rl - 1 
GOTO 5 

ELSE IF(CH0ICE .EQ. 2) THEN 
WRITECOUT**)' Program terminating at your request.' 
STOP 

ELSE IF(CH0ICE .NE. 1 .AND. CHOICE .NE. 2) THEN 
WRITECOUT,*)' Please enter Integer 1 or 2 .' 
GOTO 9 

END IF 
END IF 

C 
C 

OPENC1,FILE=DSNAME,STATUS='OLD') 
C 
C      ... Read data from file and count number of records (NUMREC): 
C 

NUMREC = 0 
10 NUMREC = NUMREC + 1 

READ(1,*,END=20,ERR=15)(AACNUMREC,J),J=l,6) 
GOTO 10 

C 
C       ...  Notify operator of file read error: 
15       WRITECOUT,*)'   ' 

WRITECOUT,*)' An error was detected in reading the file,' 
WRITECOUT,*)'     but execution will continue anyway ...' 
WRITECOUT,*)'   ' 
WRITECOUT,*)'   ' 

C 
20     NUMREC = NUMREC - 1 

WRITECOUT,*) • There are ',NUMREC' records 1 r, dot, set ',DSii/-' 
CLOSE(UNIT=l) 

C       ... The number of records per input date; set ere accu.iuli.tfed 
C In the vector NS1. 

NSKR1) = NUMREC 
C 
C       ... Define left t right sensor nu.'s fur matrix IND2: 
C "left" will be indexed with a one and "right" will 
C be indexed with a two. 

WRITECOUT,*) ' Name your left sensor array number: • 
RE AD(IN,*) IDL 
WRITECOUT,*) ' Name your right sensor array number: ' 
READ(IN,*) IDR 

C 
C       ... The left end right array ID's are entered in the 
C first and second (respectively) rows of IND2. 

IND2(1,R1) = IDL 
IND2(2,R1) = IDR 

43 



C       ... Begin subroutine calls: 
C Subroutine CROSSP takes each input data set AA, which 
C has NUMREC records* and returns RM -the six component mean 
C vector and C-the three by three matrix of sums of crossprodu 
C deviations from the means.  These are computed sequentially 
C and stored in the arrays MEAN and CROSSA as they are compute 
C 

CALL CROSSP(NUMREC,AA,RM,C) 
DO 50 I = 1,3 
DO 50 J = 1,3 
CR0SSA(R1,I,J) = C(I,J) 

50     CONTINUE 
DO 60 KM = 1,6 
MEAN(R1,KM) = RM(KM) 

60     CONTINUE 
C 
C 

WRITE(0UT,*) ' Would you like to call another data set ? • 
READdN, • (A) ») ANSWER 
IF (ANSWER .EQ. 'YES' .OR. ANSWER .EQ. 'Y') GOTO 5 
IF (ANSWER .EQ. 'yes' .OR. ANSWER .EQ. »y») GOTO 5 

C 
C      ...  The subroutine C0NECT (Gygax) takes as input the number 
C of data sets Rl» and the left/right array ID uatrix 
C IND2 and determines whether the problem input by trie 
C user is connected. That is, all sensor arrays in t r, <-. 
C problem communicate with one another via a string of 
C crossover data sets.  If this test fails, then the 
C output variable TESTC is zero and the user is proii.ptfed 
C to use one of the three options listeo in the WRITE 
C statements below. 
C 
C       ...  If the problem is connected, then TESTC is not zero ar.d 
C the subroutine returns a value for: 
C K, the number of sensor arrays in the problem. 
C IND1, a useful conversion of IND2. 
C IA, the list of sensor ID's in the order 
C maintained by the program. 
C IND2R, the submatrix of IND2 that represents data set 
C connected to the first data set. 
C DATSET, the number of crossover data sets connocxeo 
C to the first input data set. 

CALL C0NECT(0UT,R1,IND2,K,IND1,I A,TESTC, IND2R,DATSET) 
IF (TESTC .EQ. 0) THEN 

WRITE(0UT»*) 'All of your arrays are not connected. ' 
WRITEC0UT,*) 'Do you want to :' 
WRITE(OUT,*) '   (1) Quit now' 
WRITE(0UT,*) »   (2) Input more data' 
WRITE(0UT,*) '   (3) Continue, using the first connected set' 

65 WRITE(0UT,*) 'Please enter the number of your choice ' 
READdN,*) I 
IF (.NOT. ((I .EQ. D.OR.d .EQ. 2).OR.(I .EQ. 5))) GOTO 65 
GOTO (66, 67, 56),I 

66 V,'RITE(0UT, *) 'Program terminating. AdioS, Amigc !' 
STOP 

44 



67 GOTO 5 
C 
C ... The subroutine REDUCE (Gygax) does nothing unless option 3 
C above 1s evoked.  In that case 1t modifies the 
C variable CROSSA, MEAN, Rl, K, IND1, and IA so that 
C they contain only the information required by the 
C connected problem called for by this option. 
C 
68 CALL REDUCE(CR0SSA,MEAN,R1,K,IND1,IA,IND2R,DATSET) 

END IF 
C 
C ... Feed the arrays output by CONECT or REDUCE Into POOL: 
C The subroutine POOL checks on the number of data sets 
C associated with each pair of sensor arrays.  If this 
C value is one or zero it does nothing.  Otherwise it 
C (in effect) pools all the data associated with each 
C unique sensor array pair into one data set (using trie 
C within groups sum of squares technique for crossprocucts, 
C and the weighted average technique for means.  Thus, 
C CROSSA is converted to DEV; MEAN to XD; Rl to R; ZND1 to 
C IND; and NS1 to NS.  The first six called variables are 
C Input and the last five are output. 
C 

CALL P00L(K,R1,IND1,CR0SSA,MEAN,NS1,IND,DEV,X6,R,NS) 
C 
C ... Array IND output by POOL goes into INVIND: 
C The subroutine INVIND takes the variables K, R, dm liiD 
C and outputs the K by K matrix FF.  This is ar, u^per 
C triangular incidence matrix which contains a one if! 
C the position i, j (i < j) only if there exists a set of 
C crossover data involving both the i-th arid j -1 r 
C sensors (as indexed in IA).  FF is essentially an 
C inverse of IND. 

CALL INVIND(K,R,IND,FF) 
C 
C ... Array FF is output from INVIND and input tc MULTAR. 
C ... Set epsilon, the tolerable error level used in the 
C stopping rule of the subroutine MULTAR: 

EP = l.D-6 
C 
C ... The subroutine MULTAR computes, cy iteration, th<= K 
C orthonormal re-orientation matrices for each senior 
C listed in IA.  Since these are all relative to the 
C first sensor, the first matrix in the output 3 is 
C the 3 x 3 identity matrix. 
C 

CALL MULTAR(EP,FF,DEV,   K,R,6) 
C 
C ... Array B is output from MULTAR and input to INiTCEP: 

CALL INTCEP(FF,NS,B,XB,K,R,A) 

45 



C       ... Array A 1s output from INTCEP and input to DISPLC: 
C      ... The subroutine DISPLC takes variables K, B, A, ana IA as 
C Input* reads the sensor array location file and computes 
C the estimated displacement of each of the K sensors in 
C the problem.  The output DEL 1s the set of displacement 
C vectors and D is the corresponding set of K displacement 
C distances.  Since these are all relative to the first 
C sensor* the first row of DEL and first element of D are 
C zero. 
C 

CALL DISPLC(K,B,A,IA,DEL,D) 
C 
C      ... Prepare the sequential computation of the maximum angles 
C of sensor rotation. 
C 

DO 75 IK-ltK 
DO 70 1=1,3 
DO 70 J»l,3 

70     BB(I,J) = 6(IK,1,3) 
C      ... Array BB is input to MAXANG 
C 
C       ... The subroutine MAXANG takes a 3 by 3 orthonormal matrix BB 
C and computes PP» the largest possible rotation angle 
C experienced by any vector transformed by BB. 
C 

CALL MAXANG(BB,PP) 
P(IK) = PP 

75     CONTINUE 
C 
C       ... The subroutine ANGLES converts each of the K orthonorrnal 
C matrices in B to their representation as the three 
C Euler angles:  Roll, Pitch, and Yaw.  Since these are 
C relative to the first sensor, the first row of this 
C matrix is zero. 
C 

CALL ANGLES(K,B,EA) 
C 
C 
C       ... Prepare to write the output to files: 

0PEN(3,FILE='KEYFIL1.DAT',STATUS='OLD') 
0PEN(4,FILE='KEYFIL2.DAT',STATUS='0LD') 
OPEN(7,FILE='KEYFIL3.DAT',STATUS='OLD') 
OPEN(8,FILE"'KEYFIL4.DAT',STATUS*'OLD•) 

C 
WRITE(0UT,*) ' Displacement and rotation (magnitude):' 
DO 77 IK • 1,K 

C       ... Write the vectors IA, D and P to FILE1 
WRITE(3,85) IA(IK), D(IK), P(IK) 
WRITE(0UT,85) IA(IK), D(IK), P(IK) 

C 
C       ... Write the vector IA and matrices A and DEL to FILE2. 

WRITE(4,80) IA(IK), (DEL(IK,L),L=1,3), (EA(IK,LK),LK=1,3) 
77     CONTINUE 

46 



WRITE(OUT,*) ' Displacement vectors and Euler angles :' 
DO 78 IK = 1,K 
WRITE(0UT,80) IA(IK), (DEL(IK,L),L-l,3), (EA(IK,LK),LK=1,3) 

78     CONTINUE 
80     FORMAT(IX,15,IX,3F12.4,IX,3(IX,F10.7)) 
85     FORMAT(2X,I5,2X,F10.2,2X,F10.6) 

C 
C       ... Write the three dimensional array B to FILE3. 

WRITE(0UT,*)»  » 
WRITE(0UT,»)' Array B output by KEYMAIN: » 
DO 90 IK = 1,K 
WRITE(0UT,*)' • 
WRITE(0UT,*>' ' 
DO 90 I = 1,3 
WRITE(7,100)(B(IK,I,J),J=1,3) 
WRITE(OUT,100)(B(IK,I,J),J=1,3) 

90     CONTINUE 
100    FORMAT(2X,3F15.10) 

C 

c 

c 

DO 105 IK = 1,K 
WRITE(8,115)(A(IK,J),J=1,3) 

105    CONTINUE 
115    F0RMAT(2X,3F15.5) 

WRITE(OUT,110) 
110    F0RMAT(//,' Program terminating.  Operation complete.  Eye. ') 

C 
c 

CLOSE(UNIT=3) 
CL0SE(UNIT=4) 
CL0SE(UNIT=7) 
CL0SE(UNIT=8) 

STOP 
END 

SUBROUTINE CROSSP (N,AA,MEAN,CROSSA) 
C 
C     ****************************************************************** 

C *** THIS PROGRAM CALCULATES THE CROSSPRODUCT DEVIATIONS FOR     * * 
C *** THE RAW DATA ARRAY AA (A MATRIX FOR EACH CROSSOVER SET)     ** 
C *** THE SET OF MEANS IS DEVELOPED AND LABELED "MEAN" ** 
C *** CROSSA IS THE SUM OF CROSSPRODUCT DEVIATIONS FROM THE MEANS ** 
Q a***************************************************************** 
c 

INTEGERM N 
REAL*6 AA(200,6), MEAN(6), CROSSA(3,3), SUM 
REAL*8 SUMXX, SUMXY, SUMXZ, SUMYX, SUMYY, SUMYZ, SUMZX, SUMZY 
REAL*6  SUMZZ, XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ 

C 
C      ... N is the number of rows in the data matrix AA 
C      ... Compute the vector of means. 

47 



DO 20 J = 1,6 
SUM = O.DO 
DO 10 I = 1,N 
SUM = SUM + AA(I,J) 

10     CONTINUE 
MEAN(J) = SUM / DBLE(N) 

20     CONTINUE 
C 
C 
C     ... Begin the crossproduct operations: 
C Initialize the nine sums to zero. 

SUMXX=0.D0 
SUMXY=0.D0 
SUMXZ=0.D0 
SUMYX=0.D0 
SUMYY=0.D0 
SUMYZ=0.D0 
SUMZX=0.D0 
SUMZY=0.D0 
SUMZZ=0.D0 

C 
DO 100 IA = 1,N 

C 
C     ... Create the crossproduct deviations for row IA of matrix AA 
C 

XX=(AA(IA,1)-MEAN(1))*(AA(I A,4)-MEAN(4)) 
XY=(AA(IA,1)-MEAN(1))*(AA(IA, 5)-MEAN ( 5)) 
XZ=(AA(IA,1)-MEAN(1))*(AA(I A,6)-MEAN(6)) 
YX=(AA(IA,2)-MEAN(2))*(AA(I A,4)-MEAN(4)) 
YY=(AA(IA,2)-MEAN(2))*(AA(I A,5)-MEAN(5)) 
YZ=(AA(IA,2)-MEAN(2))*(AA(I A,6)-MEAN(6)) 
ZX=(AA(IA,3)-MEAN(3))*(AA(IA,4)-MEAN(4)) 
ZY=(AA(IA,3)-MEAN(3))*(AA(I A,5)-ME AN(5)) 
ZZ=(AA(IA,3)-MEAN(3))*(AA(I A,6)-MEAN(6)) 

C 
C     ... Accumulate the sums: 

SUMXX=XX+SUMXX 
SUMXY=XY+SUMXY 
SUMXZ=XZ+SUMXZ 
SUMYX=YX+SUMYX 
SUMYY=YY+SUMYY 
SUMYZ=YZ+SUMYZ 
SUMZX=ZX+SUMZX" 
SUMZY=ZY+SUMZY 
SUMZZ=ZZ+SUMZZ 

C 
100  CONTINUE 

C 

48 



c 

c 

... Create the CROSSA matrix 
CROSSA(l,l)=SUMXX 
CR0SSA(1,2)=SUMXY 
CROSSA(l,3)=SUMXZ 
CR0SSA(2,1)=SUMYX 
CR0SSA(2,2)=SUMYY 
CROSSA(2,3)=SUMYZ 
CROSSA(3,l)=SUMZX 
CR0SSA(3,2)=SUMZY 
CROSSA(3,3)=SUMZZ 

RETURN 

END 

SUBROUTINE CONECT (OUT,Rl,IND2,K,IND1,IA,TESTC,IND2R,DATSET) 
C 
C      a*************************************************************** 

C *** This subroutine checks for the connectedness of the *** 
C *** input data sets. If the problem is connected then the *** 
C *** user is informed and the array pairs are printed on the *** 
C *** screen; if not connected, then the user is pron.pted to *** 
C *** select one of three options - quit, add conecting data *** 
C *** sets, or run the program using the first connected set *** 
C *** that was input. Gygax - July 1985 *** 
Q ft********************************************************** **•#*# 

c 
C      ...Variable declarations. 
C 

INTEGERM Rl,K,IND2(2,30),IND1(30,30),I,J,IA(30),FIR5T 
INTEGER*4 LI ST(30),BEGIN,HALT,DI SCON,L,M,0,TESTC,IND2R(2,3 0) 
INTEGER*4 DATSET(30),COUNT,SAVE(2,30), OUT 

C 
C      ...Initialize the values of FIRST and COUNT: 
C 

FIRST = 0 
COUNT = 0 

C 
C      ...Make vector IA = list of all arrays (w/o repeats) in INC2 
C and get the value for K = # of individual arrays. 
C 

IA(1) = IND2(1,1) 
IA(2) = IND2(2,1) 
K = 3 
IF (Rl .EQ. 1) GOTO 60 
DO 50 I = 1,R1 

DO 40 J = 1,2 
M = K - 1 
DO 3 0 L = L»M 

IF (IMD2(J,I) .EQ. IA(D) GOTC 40 
30 CONTINUE 

49 



IA(K) = IND2CJ.I) 
K = K + 1 

40      CONTINUE 
50      CONTINUE 
60   K = K - 1 

C 
WRITE(OUT,») «R1  SRI 
WRITE(0UT,*)'K   «,K 

C     ... For each column of IND1 (columns correspond to data sets) the 
C entries are all zero except for the row that corresponds to 
C the left array (= 1) and the right array (= 2). 
C 

DO 80 I = 1,R1 
DO 70 J = 1,K 

INDKJ.I) = 0 
IF (IND2(1,I) .EQ. IA(J)> IND1(J,I) = 1 
IF (IND2(2,I) .EQ. IA(J)) INDKJ.I) = 2 

70      CONTINUE 
80   CONTINUE 

C 
C     ...Check to see if all the arrays are connected. 
C 

TESTC = 1 
LIST(l) = -IAU) 
DO 131 I = 1,R1 

IF (IND2U.I) .EQ. -LIST(D) IND2C1.I) = -IND2(1,I) 
IF (IND2(2,I) .EQ. -LIST(D) IND2(2,I) = -IND2(2,I) 

131  CONTINUE 
BEGIN = 1 
HALT = 1 

140 IF (.NOT. (BEGIN .LE. HALT)) GOTO 170 
NODE = LIST(BEGIN) 
BEGIN = BEGIN + 1 
DO 150 I = 1,R1 

IF (.NOT.((N0DE.EQ.IND2(1,I)).AND.(IND2(2,I).GT.0))) GOTO 150 
HALT = HALT + 1 
LIST(HALT) = -IND2(2,I) 
DO 141 J = 1,R1 

IF (IND2(1,J) .EQ. -LIST(HALT)) IND2(1,J) = -IKD2(1,J) 
IF (IND2C2.J) .EQ. -LIST(HALT)) IND2(2,J) = -IND2(2#J) 

141 CONTINUE 
150 CONTINUE 

DC 160 I = 1,R1 
IF (.NOT.((NODE.EQ.IND2(2,I)).AND.(IND2( 1, I) .GT.O) )) GOTC 160 

HALT = HALT + 1 
LIST(HALT) = -IND2(1,I) 
DO 151 J = 1,R1 

IF (IND2(1,J) .EQ. -LIST(HALT)) IND2(1,J) = -IND2(1,J) 
IF (IND2(2,J) .EQ. -LIST(HALT)) IND2(2,J) = -IND2(2»J) 

151 CONTINUE 
160  CONTINUE 

GOTO 140 
170  CONTINUE 

50 



:     ...Print out the matched pairs. 
DISCON = 0 
WRITE(0UT,230) 
DO 200 I = 1,R1 
IF (IND2(1,I) .LT. 0) GOTO 190 
IF (IND2C1.I) .EQ. 0) GOTO 200 
IF (<IND2(1#I> .GT. 0) .AND. (DISCON .EQ. D) GOTO 200 
FIRST = FIRST + 1 
DISCON = 1 
TESTC = 0 
BEGIN = 1 
HALT = 1 
LIST(l) • IND2(1»I) 
GOTO 200 

190  WRITE(0UT,240) - IND2(1,I),-IND2(2,I) 
IF ((FIRST.EQ.O).OR.((FIRST.EQ.l).AND.(DISCON.EQ.l))) THEN 

COUNT = COUNT + 1 
IND2R(1,COUNT) = -IND2(1,I) 
IND2R(2,COUNT) = -IND2(2»I) 
DATSET(COUNT) = I 

END IF 
SAVE(1,I) = -IND2(1,I) 
SAVE(2,I) = -IND2(2,I) 
IND2(1,I) = 0 
IND2(2,I) = 0 

200  CONTINUE 
IF (DISCON .EQ. 1) GOTO 140 
DO 220 I = 1,R1 

IND2(ltI) = SAVE(1,I) 
IND2(2,I) = SAVE(2,I) 

220  CONTINUE 
RETURN 

230  FORMATdX, 'THE FOLLOWING PAIRS ARE CONNECTED :') 
240  FORMATdX,1415) 

END 

SUBROUTINE REDUCE (CROSS A,ME AN,Rl,K,IND1,I A,IND2R,DATSET) 
C 
Q ************************************************************** 
C *** This is a specialized subroutine that is used  when * * * 
C *** option three is involked as a result of e. foiled con- *** 
C *** nectedness test. The disconnected data sets must be *** 
C *** removed fron the variables CROSSA and MEAN, and ether *** 
C *** program supporting variables must be adjusted. *** 
C *** Gygax - July 1985 *** 
C a*************************************************** *********x 
C      ... Variable declarations. 
C 

INTEGER*4 R1,K,IND1(30,30),IA(30),IND2R(2,3C),I,J,L,M,DATSET(30) 
C 

REAL*8 CROSSA(3 0,3,3),MEAN(30,6) 

51 



C      ... Compute the new, reduced Rl: 
DO 10 I = 1,30 

IF (IND2R(1,I) .EQ. 0) GOTO 20 
10   CONTINUE 
20   Rl = I - 1 

C 
C      ... Make a new, reduced vector IA • 11st of all arrays in 
C IND2R w/o repeats. Also, compute a new K. 
C 

IA(1) = IND2R(1,1) 
IA(2) = IND2R(2,1) 
K = 3 
IF (Rl .EQ. 1) GOTO 60 
DO 50 I = 1,R1 

DO 40 J = 1,2 
M = K - 1 
DO 30 L = 1,M 

IF (IND2R(J,I) .EQ. IA(L>) GOTO 40 
30 CONTINUE 

IA(K) = IND2R(J,I) 
K = K + 1 

40      CONTINUE 
50   CONTINUE 
60   K = K - 1 

C 
C      ... Remake the reduced matrix IND1 - for each column in IND1 
C (corresponding to a data set) the entries are zero except 
C for the enties corresponding to the left array (= 1) and 
C right array (=2). 
C 

DO 80 I = 1,R1 
DO 70 J = 1,K 

INDKJ.I) = 0 
IF (IND2R(1,I) .EQ. IA(J)) IND1(J,I) = 1 
IF (IND2R(2,I) .EQ. IA(J)) IND1(J,I) = 2 

70      CONTINUE 
80   CONTINUE 

C 
C      ... Reduce the arrays CR0SSA and MEAN to account for the 
C removed data sets. 
C 

DO 120 I = 1,R1 
DO 90 J = 1,6 

MEAN(IJ) = MEAN(DATSETd) ,J ) 
90      CONTINUE 

DO 110 J = 1,3 
DO 100 L = 1,3 

CROSSA(I,J,L) = CROSSA(DATSET(I),J,L) 
100        CONTINUE 
110     CONTINUE 
120  CONTINUE 

RETURN 
END 

52 



SUBROUTINE POOL(K,Rl,IND1,CROSSA,MEAN,NS1,IND,DEV,XB,R,NS) 
C 
Q        ft************************************************************** 

Q *##  Pools the means and the cross product deviations      *** 
Q *##  so that each cross covarlance corresponds to a unique  *** 
C ***  sensor array pair. *** 
Q *###*##**###*###*#*#**#*#*###########************************** 
C 

INTEGER*4 K,R1,IND1(30,30),IND(30,30),R,NS1(30),NS(30),IC,IS 
REAL*8 CR0SSA(30,3,3), MEAN(30,6), DEV(30,3,3), XB(30,6), 

+     TX(6), DD(3,3),RNS, DNS1 
C 
C 
C     ... Outputs replacement variables IND, DEV* XB, R, and NS 
C        for use 1n MULTAR and INTCEP. That 1s: 
C        IND replaces IND1, DEV is the pooled version of CROSSA, 
C        XD is the pooled version of MEAN, R replaces Rl, 
C        and NS replaces NS1. 
C 
C     ... Identify data subsets in IND1 which are in the wrong orcer 
C        for use in the algorithms and transpose thern. 

DO 20 IR=1,R1 
DO 10 1=1,K 
IF (IND1(I,IR) .EG. 0) THEN 

GOTO 5 
ELSE IF (IND1(I,IR) .EG. 1) THEN 

IK=I 
ELSE IF (IND1(I,IR) .EQ. 2) THEN 

JK=I 
END IF 

5   CONTINUE 
10   CONTINUE 

IF (IK .LT. JK) GOTO 20 
DO 12 1=1,3 
IP3=I+3 
TX(I)=MEAN(IR,IP3) 
TX(IP3)=MEAN(IR,I) 
DO 12 J=l,3 

12   DD(I,J) = CR0SSA(IR,J,I) 
DO 15 1=1,3 
IP3=I+3 
MEAN(IR,I)=TX(I) 
MEAM(IR,IP3)=TX(IP3) 
DO 15 J-1,3 

15   CROSSA(IR,I,J)=DD( I,J ) 
20   CONTINUE 

C     ... The transpositions are completed. 
C     ... Locate the subsets to be pocled and do the pooling. 
C Initialize the variables. 

IC = 1 
C     ... Zero the IND array. 

DO 25 IT=1,K 
DO 25 IR=1,R1 
IND(IT,IR)=0 

25   CONTINUE 

53 



c 
c 

c 

c 

!    ... Start the algorithm. 
KM1=K-1 
DO 40 1=1,KM1 
IP1 - I + 1 
DO 40 J=IP1,K 
IS = 0 

)    ... Zero the arrays Initially. 
NS(IC) = 0 
DO 28 IT=1,3 
ITP3=IT+3 
TX(IT)=0.0D+0 
TX(ITP3)=0.0D+0 
DO 28 JT=1,3 

28   DEV(IC,IT,JT)=0.0D+0 
... Initialization is completed for this I,J pair. 

DO 35 IR=1,R1 
IF (IND1(I,IR) .EQ. 0 .OR. IND1(J,IR) .EQ. 0) GOTO 35 
DNS1 = DBLE(NSKIR) ) 
... Set a flag to show a viable I»J pair: 
IS=1 
... Accumulate weighted sum of means: 
DO 32 IT=1,6 
TX(IT) = TX(IT) + DNS1 * MEAN(IR,IT) 

32 CONTINUE 
)     ... Accumulate sums of crossproducts. 

DO 33 IT=1,3 
DO 33 JT=1,3 
DEV(IC,IT,JT) = DEV(IC,IT,JT) + CROSSA ( IR, IT, J T) 

33 CONTINUE 
) ...   Accumulate   sample   sizes: 

NS(IC)   =   NS(IC)   +   NSKIR) 
35 CONTINUE 

IF (IS .EQ. 0) GOTO 40 
) ... Convert pooled crossproducts into cross covariances. 

RNS = DBLE(NSdC) ) 
DO 36 IT-1,3 
DO 36 JT=1,3 

36 DEV(IC,IT,JT)=DEV(IC,IT,JT)/RNS 
)     ... Convert weighted sums into pooled r.:eans: 

DO 38 IT=1,6 
38   XB(ICIT) = TX(IT) / RNS 

... Set the values in the IND matrix and update the counter 
IND(I,IC) = 1 
IND(J,IC) = 2 
IC = IC + 1 

40   CONTINUE 
/     ... When finished, the counter needs correction. 

R=IC - 1 
RETURN 
END 

54 



SUBROUTINE INVIND(K,R,IND,FF) 
C 

C *** Computes the matrix FF from IND *** 
C *** FF 1s used 1n MULTAR and INTCEP *** 
C *** IR Indexes the columns of IND* I.e. the crossover pairs.  *** 
C *** i and J Index the sensor arrays. *** 
C *** K 1s the number of arrays 1n the problem *** 
C      *** R 1s the number of (array pair) data sets 1n the problem. *** 
Q ***************************************************************** 
C 

INTEGER*4 R, K 
INTEGERM IND(30,30), FF(30,30) 

C 
C      ... Initial1ze F: 

DO 20 1=1,K 
DO 20 J»1,K 

C      ... Change the value of FF to the crossover set Index for 
C those array pairs, I<J, that are 1n the problem. 
20    FF(I,J) = 0 

KM1 * K - 1 
DO 40 1=1,KM1 
IP1 = I + 1 
DO 40 J = IP1,K 
DO 40 IR = 1,R 
IF(IND(I,IR) .EG. 1 .AND. IND(J,IR) .EQ. 2) FF(I,J) = IR 

40     CONTINUE 
C 

RETURN 
END 

SUBROUTINE MULTAR(EP,FF,DEV,   K,R,B) 
C 
C     ***************************************************************** 
C     *** This is an iterative program to compute the K orthonormal *** 
C     *** matrices in B. They must simultaneously optin.ize the sum  *** 
C     *** of traces objective function. *** 
Q     ***************************************************************** 
C 
C      
C 
C     ** K is the number of arrays. 
C     ** R is the number of crossover sets. 
C     ** EP is the epsilon for stopping the iterations. 
C     ** DEV is the set of pooled crosscovariances. 
C     ** Calls BMAX, MOE and MULT3. 
C      
C 
C     ... Decla rat i ons 
C 

INTEGERM R, FF(30,30), K 
REAL*8  B(30,3,3), E(30,3,3), F(30,3,3), DEV(30,3,3) 
REAL*8  EP, REP, W ,W0, BB(3,3), DD(3,3), T(3,3), GOO,3,3) 

55 



c 
C     ... Initialize B as K Identity matrices. 
C 

DO 2 KK=1,K 
DO 2 I = 1,3 
DO 2 J-1,3 
B(KK,I,J) = 0.D0 
IF (I .EO. J) B(KK,I,J) = 1.D0 

2      CONTINUE 
C      ... Initialize the temporary arrays. 
5     DO 10 KK=1,K 

DO 10 I -1,3 
DO 10 J = 1,3 
F(KK,I,J)=0.D0 
E(KK,I,J)=0.D0 

10      CONTINUE 
C 
C      ... Compute WO, the Initial value of the objective function. 

CALL M0E(K,FF,DEV,B,W0) 
C 
C      ... Prepare for the linear transformation of those members of E 
C designated as LEFT with the cross covariances. 

DO 30 KK=2,K 
KKM1=KK-1 
DO 30 JI=1,KKM1 
IR=FF(JI,KK) 
IF (IR .EQ. 0) GOTO 25 
DO 15 IB = 1,3 
DO 15 JB = 1,3 
BB(IB,JB) = B(JI,IB,JB) 
DD(IB,JB) = DEV(IR,IB,JB) 

15     CONTINUE 
C 
C       ... Perform matrix multiplication and accumulate. 

CALL MULT3(BB,DD,T) 
DO 20 I = 1,3 
DO 20 J = 1,3 

20     E(KK,I,J) = E(KK,I,J) + T(I,J) 
25     CONTINUE 
30     CONTINUE 

C 
C       ... Prepare for the linear transformations cf those members of E 
C designated as RIGHT with the cross covariances. 

KM1 = K-l 
DO 40 KK=1,KM1 
KKP1 = KK + 1 
DO 40 JJ=KKP1,K 
IR=FF(KK,JJ) 
IF (IR .EQ. 0) GOTO 38 
DO 32 IB = 1,3 
DO 32 JB = 1,3 
BB(IB,JB) = B(JJ,IB,JB) 
DD(IB,JB) = DEV(IR,JB,IB) 

32     CONTINUE 
C 

56 



C      ... Perform matrix multiplication and accumulate. 
CALL MULT3(BB,DD,T) 
DO 35 I -1,3 
DO 35 J = 1,3 

35     F(KK,I,J)=F(KK,I,J)+T(I,J) 
38     CONTINUE 
40     CONTINUE 

C 
C      ... Gather the LEFT and RIGHT accumulations. 

DO 50 KK=1,K 
DO 50 I -1,3 
DO 50 J = 1,3 
G(KK,I,J)=E(KK,I,J)+F(KK,I,J) 

50     CONTINUE 
C 
C      ... Start seeking the maximum on the objective surface. 

DO 60 KK=2,K 
DO 55 I = 1,3 
DO 55 J =1,3 
BB(I,J) = B(KK,I,J) 
DD(I,J) = G(KK,I,J) 

55    CONTINUE 
C       ... Subroutine call to optimize an indiviual matrix in B. 

CALL BMAX(EP,DD,BB) 
C       ... Insert updated values into the B array. 

DO 58 1=1,3 
DO 58 J=l,3 

58    B(KK,I,J) = BB(I,J) 
60    CONTINUE 

C 
C       ... Compute new value of the objective function. 

CALL M0E(K,FF,DEV,B,W) 
C 
C       ... Compare with previous value and decide whether to 
C terminate or iterate. 

REP = EP * W0 / 1.D2 
IF (DABSCW - W0) .GT. REP) GOTO 5 

C 
RETURN 
END 

SUBROUTINE M0E(K,FF,DEV,B,W) 
C 

C *** Computes the measure of effectiveness for MULTAR: *** 
C *** Output is W, the sum of traces of cross coveriances * * * 
C *** modified on the left by the B matrix of the left array, *** 
C * * * and on the right by the transpose of the B matrix of *** 
C *** the right array. * * * 

C 
INTEGERM K, FF(30,30) 
REAL*8 BOO,3,3), DEVO0,3,3), W 

57 



W=O.DO 
KM1-K-1 
DO 20 IT = 1,KM1 
ITP1-IT+1 
DO 20 JT = ITP1.K 
IR = FF(IT,JT) 
IF (IR .EO. 0). GOTO IS 
DO 10 1-1,3 
DO 10 M-1,3 
DO 10 J = l,3 
W=W+DEV(IR,I,M)*B(JT,J,M)*B(IT,J,I) 

10     CONTINUE 
15     CONTINUE 
20     CONTINUE 

C 
RETURN 
END 

SUBROUTINE BMAX (EP,D,B) 
C 
C       a************************************************************* 
C *** Iterative program that climbs the surface D*B-TRANS. *** 
C *** and stops when the change is less than EP tin.es *** 
C *** previous level divided by 10.  Input D from MULTAR and *** 
C *** output B which is a 3x3 othonormal matrix. *** 
C *** Calls the subroutine TW0DIM. *** 
C *** -- August 1985. *** 
C a************************************************************* 
C 

REAL*8 B(3,3), D(3,3), BB(3,3), C(3,3), BM(3,3) 
REAL*8 Q, O0, EP, R, REP 

C       ... Initialize the value on the surface Q for the special 
C case of B = Identity matrix: 

Q = 0.D0 
DO 2 1=1,3 
Q = Q + D(I,I) 

2      CONTINUE 
C 
C       ... Initialize B as the identity matrix: 

DO 5 1=1,3 
DO 5 J=l,3 
B( I,J) = 0.D0 
IF (I .EQ. J) B(I,J) = 1.D0 

5 CONTINUE 
6 CONTINUE 

C 
C       ... Compute the intermediate values C = D * B - TRANS : 

DO 25 I = 1,3 
DO 25 J = 1,3 
C(I,J) = 0.D0 
DO 25 L = 1,3 
C(I,J) = C(I,J) + D( I,L) * B(J,L) 

25     CONTINUE 

58 



c 
c 
C      ... Subroutine call to climb higher on the surface of Q: 

CALL TWODIM(CBB) 
DO 8 I = 1,3 
DO 8 J = 1,3 
BM(I,J) = B(I,J) 

8     CONTINUE 
C 
C      ... Replace B with the matrix product.  This updates the B matrix. 

CALL MULT3(BB,BM,B) 
C 
C      ... Record previous level on the surface: 

QO = Q 
C 
C      ... Compute new value on the surface: 

Q = 0.D0 
DO 10 I = 1,3 
DO   10   J   =   1,3 

10 Q  =   Q  +   (D(I,J)   *   B(I,J)) 
C 
C ...   Prepare   the   stopping   rule: 

R   =   Q  -   O0 
REP = EP * QO / 10. 

C       ... Compares the relative gain with EP; stops if too small: 
IF (R.GT.REP) GOTO 6 

C 
c 

RETURN 
END 

SUBROUTINE TWODIM (D,B) 
C 

C *** FORTRAN subroutine to compute new roll, pitch, and *** 
C *** yaw matrices (B1,B2,B3) and combine into a single *** 
C *** orthonormal transformation.  Receives D from BMAX, *** 
C *** outputs B, calls MULT3. *** 
C #*# -- io June 1985. *** 

c 
C       ... Dimension variables and declare then, to be double precision 

REAL*8 B(3,3), D(3,3), T(3,3), E(3,3) 
REAL*8 F(3,3), Bl(3,3), B2(3,3), B3(3,3) 
REAL*8 S, C, DEN0M, SS 

C 
C       ... Initialize the three matrices. 

DO 5 1=1,3 
DO 5 J=l,3 
Bl( I,J)=0.D0 
B2( I,J) = 0.D0 
B3( I,J ) = 0.D0 

5      CONTINUE 

59 



c 
c 

c 
c 
c 
c 

c 
c 

c 
c 

c 
c 
c 

c 
c 

... Develop Bl (roll matrix) from input D: 
S = D(3#2) - D(2,3) 
C = D(2,2) + D(3i3> 
SS = S*S + C*C 
DENOM = DSQRT(SS) 
S = S / DENOM 
C = C / DENOM 

... Finalize the Bl matrix: 
Bl(2,2) = C 
Bl(2,3) = S 
Bl(3,2) = -S 
BK3.3) • C 
Bl(l,l) = 1.D0 

... Update the input matrix to adjust for roll: 

... E = D*B1 
CALL MULT3(D,B1,E) 

... Develop B2 (pitch matrix) from E: 
S = E(3,l) - Ed,3) 
C = E(3»3) + E(l,l) 
SS = S*S + C*C 
DENOM = DSQRT(SS) 
S = S / DENOM 
C = C / DENOM 
... Finalize the B2 matrix: 
B2(l,l) = C 
B2(l,3) = S 
B2(2,2) = 1.D0 
B2(3,l) = -S 
B2(3,3) = C 
... Additional update of the input matrix to adjust for pitch 
... F = E*B2 
CALL MULT3(E#B2#F) 

... Develop B3 (yaw matrix) from F: 

S = F(2,l) - F(l,2) 
C = F(1,1) + F(2,2) 
SS = S*S + C*C 
DENOM = DSORT(SS) 
S = S / DENOM 
C = C / DENOM 

... Finalize the B3 matrix: 
B3(l,l) = C 
B3(l,2) = S 
B3(2,l) = -S 
B3(2,2) = C 
B3(3,3) = 1.D0 

60 



C      ... Final triple multiplication of matrices coupled 
C with transposition: 
C B.transpose = Bl * B2 * B3 

DO 30 1-1,3 
DO 30 J«l,3 
B(J,I) = 0.D0 
DO 30 IK»1,3 
DO 30 KJ=1,3 
B(J,I)=B(J,I)+B1(I,IK)*B2(IK,KJ)*B3(KJ,J) 

30     CONTINUE 
RETURN 
END 

SUBROUTINE MULT3(A,B,C) 
C 
Q a********************************************************** 
C     ***  Multiplies the 3 by 3 matrices A and B to get C    *** 
C     *********************************************************** 
c 

REAL*8 A(3,3), B(3,3), C(3,3) 

DO 10 1=1,3 
DO 10 J=l,3 
C(I,J)= 0.D0 
DO 10 K=l,3 
C(I,J) = C(I,J) + A(I,K)*B(K,J) 

10   CONTINUE 
RETURN 
END 

SUBROUTINE INTCEP(FF,NS,B,XB,K,R,A) 
C 
0 ********************************************************* ******* 
C *** Sets up and solves the system of linear equations for    *** 
C *** each component of the set of K intercept vectors.        *** 
C *** Requires the output of POOL and MULTAR. *** 
C *** -- June 1985. *** 
Q ************************************************************** K * 

C 
C ** K is the number of sensor arrays in the problem. 
C * * R is the (pooled) number of crossover data sets. 
C ** NS is the vector of sample sizes for the crossover sets. 
C ** FF is the upper triangular K by K matrix whose values are 
C ** either zero or the index of the data set for the array pair 
C ** identified by the subscripts. 
C ** XB is the R by 6 matrix of means for each of the two arrays 
C ** identified with each of the R data sets. 
C ** B is the K by 3 by 3 collection of orthonormal orientation 
C ** correction matrices returned from MULTAR. 
C ** The output A is the K by 3 matrix of intercept values 
C ** estimated for each of the K arrays in the problem. 
C 

61 



C     ... Calls MMATMUL which performs linear transformations. 
C      ... Calls SYSLIN which solves systems of linear equations. 
C 
C     ... Declaratlons. 
C 

INTEGER*4 R, FFO0,30), NS(30), K, I, IR, IP1 
REAL*8  BOO,3,3), XB (30,6),MOO,30), 

1 LHSO0,3),XLO0,3),XLLO0,3),XXLO0,3) ,XR(30,3) ,XRRO0,3) , 
2 XXRO0,3), EO0,3),F(30,3),AO0,3),AAO0,31),DNS 

C 
C     ... Begin development of the coefficient matrix M, off diagonal 
C terms.  Also prepare the inputs for the surnmands on the 
C other side of the equation. Affixes L and R are used to 
C suggest the left and right portions of the expressions. 
C 
C     ... The values 1n the coefficient matrix are zero whenever the 
C array pair 1s not identified with a crossover data set, i.e. 
C when FF(1,j)=0 and 1 is less than j. Otherwise its value is 
C the negative of the sample size for the data set. 
C 

KM1=K-1 
DO 10 1=1,KM1 
IP1 = I + 1 
DO 10 J=IP1,K 
IR-FF(I.J) 
IF (IR .EQ. 0) THEN 

M(I,J) = 0.D0 
M(J,I) = 0.D0 
GOTO 10 

END IF 
Ni(I,J) = -1.D0 * DBLE(NSdR) ) 
M ( J , I) = M ( I, J ) 
DO 5 11=1,3 

C 
C      ...The weighted version requires that the means be multiplied 
C        by NS. The first three columns of XB are identified with the 
C        left (L) array of the pair; the last 3 with the right (P). 
C        This prepares inputs for surnmands on the other side of the 
C        equation. 
C 

DNS = DBLECNS(IR)) 
XL(IR, II)=DNS*XB(IR,II) 
IIP3 =3+11 

5     XR(IR,II)=DNS*XB(IR,IIP3) 
C 
10     CONTINUE 

C 
C      ... Finish development of the M matrix. The diagonal term in a 
C row is the negative of the total of the other terms in that 
C row. The first column of E is used to accumulate terms. 
C 

62 



DO 15 1=1,K 
M(I,I) = O.DO 
E(I.l) = O.DO 
DO 12 J-l.K 

12    E(1,1) = E(Ifl) + M(I,J) 
M(I,I) = -l.DO * E(I,1) 

15    CONTINUE 
C 
C     ... The coefficient matrix 1s complete. 
C Next develop the sequence of partial sum arrays for use in 
C the LHS of the system of equations. First initialize. 
C Then treat the left array partial sums. 

DO 25 KK=2,K 
DO 22 J = l,3 
XXL(KK,J)=0.D0 
XLL(KK,J)=0.D0 

22 CONTINUE 
KKM1=KK-1 
DO 25 I»1,KKM1 
IR = FFdt KK) 
IF (IR .EQ. 0) GOTO 25 
CALL MMATML(K,R,I,IR,IR,B,XL,F) 
DO 23 J = l,3 
XXL(KK,J) = XXL(KK,J) + F(IR,J) 

23 XLL(KK,J) = XLL(KK,J) + XR(IR,J) 
25 CONTINUE 

C 
C     ... Next develop the right array partial sums. 
C Again the initial values must be zero. 

DO 30 KK=1,KM1 
DO 26 1=1,3 
XXR(KK,I)=0.D0 
XRR(KK,I)=0.D0 

26 CONTINUE 
KKP1=KK+1 
DO 30 J=KKP1,K 
IR=FF(KK,J) 
IF (IR .EQ. 0) GOTO 30 
CALL MMATML(K,R,J,IR,IR,B,XR,F) 
DO 27 1=1,3 
XXR(KK,I) = XXR(KK,I) + F(IR,I) 

27 XRR(KK,I) = XRR(KK,I) + XL(IR,I) 
30    CONTINUE 

C 
C      ...Collect the above quantities into the LHS of the system 
C        of equations. Omit the end terms for now. 
C 

DO 35 KK=2,KM1 
DO 31 11=1,3 

31    XL(K,II) = XLL(KK,II) + XRR(KK,II) 
CALL MMATML(K,R,KK,K,K,B,XL,F) 
DO 33 11=1,3 

33    LHS(KK,II)=XXL(KK,II)+XXR(KK,II)-F(K,II) 
35    CONTINUE 

C 

63 



C     ...Finalize with the end correction terms. 
C 

CALL MMATML(K,R,1,1,1,B,XRR,F) 
DO 38 I = 1,3 
LHS(1,I) = XXR(1,I) - F(1,I) 

38    CONTINUE 
CALL MMATML(K,R,K,K,1,B,XLL,F) 
DO 40 1-1,3 

40    LHS(K,I) = XXL(K,I) - F(1,I) 
C 
C     ... SOLVE THE LINEAR SYSTEM MA=L. This must be done three times, 
C once for each column of LHS. Since the matrix M has rank K-l 
C and since the solution is to be made relative to the first 
C array, we trim away the first row and first column of M to 
C get a non-singular system. For the same reason the elements 
C of the first row of A are all set to zero. 
C 

DO 50 1=1,3 
C      ... Prepare the input to SYSLIN for each column of LHS. 

DO 48 KI=2,K 
DO 45 KJ=2,K 
KIM1-KI-1 
KJM1=KJ-1 
AA(KIM1,KJM1)=M(KI,KJ) 

45    CONTINUE 
48    AA(KIM1,K)=LHS(KI,I) 

C 
C      ... Solve the system. 

CALL SYSLIN(AA,30,KM1) 
A(1,I) = 0.D0 

C     ... Place the solution into the output matrix A. 
DO 50 KK=2,K 
KKM1=KK-1 
A(KK,I)=AA(KKM1,K) 

50    CONTINUE 
C 
C 

RETURN 
END 

SUBROUTINE MULMAT(BB,EE,EF) 
C 
Q a********************************************************* 

C      ***  Subroutine to perform a linear t rans f orniat 1 on in  *** 
C      ***  three-space.  Specifically, EF is the product of  *** 
C      ***  the matrix BB and the vector EE. *** 
C      *********************** *********************************** 
C 

REAL*8 BB(3,3), EF(3) , EE(3) 
C 
C      ... Initialize EE at zero: 

DO 1C I = 1,3 
EF(I) = 0.D0 

10    CONTINUE 

64 



• 

DO 20 I = 1,3 
X = O.DO 

C     ...  Accumulate the dot product of EE and the I-th row of BB 
DO 30 J = 1,3 

30    X = X + BB(I,J) * EEC) 
EF(I) = X 

20    CONTINUE 
RETURN 
END 

SUBROUTINE SYSLIN(A,IR,IC) 
C 

C    *** Finds the solution of a system of IC equations in IC    *** 
C     *** unknowns. *** 
C     a************************************************************** 

REAL*8  Ad) 
ICP1 = IC + 1 
DO 107 K • 1,IC 
INDEX1 = (K-1)*IR + K 
A(INDEXl) = 1.D0/A(INDEX1) 
DO 102 J - 1,ICP1 
IF(J-K) 3,102,3 

3    INDEX2 = (J-1)*IR + K 
A(INDEX2) = A(INDEX2)*A(INDEX1) 

102  CONTINUE 
DO 115 I = 1,IC 
IF (I-K) 20,115,20 

20 INDEX3 = (K-1)*IR + I 
DO 114 J = 1,ICP1 
IF(J-K) 21,114,21 

21 INDEX2 = (J-1)*IR + I 
INDEX4 = (J - 1)«IR + K 
A(INDEX2) = A(INDEX2) - A(INDEX4)*A(INDEX3) 

114 CONTINUE 
115 CONTINUE 

DO 107 I = 1,IC 
IF(I-K) 22,107,22 

22 INDEX2 = (K-1)*IR + I 
AUNDEX2) = -1.D0 * A(INDEX2)*A(INDEX1) 

107  CONTINUE 
RETURN 
END 

65 



c 

SUBROUTINE MMATML(K,R,L,M,N,B,E,F) 
C 
C       a*********************************************************** 
C *** Prepares for a linear transformation by a selected *** 
C *** Lth face of B; calls MULMAT to perform the *** 
C *** transformation on the Mth row of E and positions *** 
C *** the new vector 1n the Nth row of F. *** 
C *** K = number of arrays in the problem *** 
C *** R = number of rows 1n (common to) E and F *** 
C *** L • array Index; first argument of B *** 
C *** M = index of the row of E *** 
C *** N = Index of the row of F *** 
C *** B = Rank 3 family of rotational matrices *** 
C *** EE • multiplicand vector *** 
C *** EF = product vector *** 
C *** E = Input array (of rank 2), row M is used for EE *** 
C *## F = output array (of rank 2)»EF is placed in row N *** 
C ************************************************************ 
C 
C 

INTEGER*4 I, J, K, L, M, N ,R 
REAL*8 BB(3,3), B(30,3,3), EE(3), EF(3), E(30,3), F(30,3) 

C 
C      ... Initialize the temporary variables: 

DO 10 I = 1,3 
EE(I) = E(M,I) 
DO 10 J = 1,3 
BB(I,J) = B(L,I,J) 

10     CONTINUE 
C 
C       ... Call routine to perform linear t ransf orniat i on 

CALL MULMAT(BB,EE,EF) 
C       ... Position the output as prescribed. 
C 

DO 20 I = 1,3 
F(N,I) = EF(I) 

20     CONTINUE 

RETURN 
END 

SUBROUTINE DISPLC(K,B,A,IA,DEL,D) 
C 
C ***** a**************************************************** *x* ******* 
C *x* DEL is the set of (output) displacements of the K arrays     *** 
C *** estimated by the least square method. *** 
C *** D is the length of each row of DEL. **.* 
C ***   B is the set of K reorientation matrices (output of MULTAR). *** 
C *** A is the output of INTCEP (i.e. the array intercept vectors).*** 
C *** IA is the list of sensor arrays in the problem. *** 
C ************************************************* x*****************% 
C 

66 



C     ... Dec!aratlons. 
C 

REAL*8 BOO,3,3), A(30,3), AL(30,3), DEL(30,3), AA(3) 
REAL*8 ID(3,3), BB(3,3), D(30), ARNUM1, ARNUM2, ARNUM3, T(3) 
INTEGERM IA(30), K, DATE 

C 
C    ... Create an Identity matrix ID: 
C 

DO 10 1-1,3 
DO 10 J-1,3 
ID(I,J) - 0.D0 
IF ( I .NE. J ) GOTO 9 
ID(I,J) = 1.D0 

9 CONTINUE 
10 CONTINUE 

C 
C     ... Read file AR1.DAT 1n the order specified by IA. 
C        This 1s used to create AL» the matrix of assumed locations 
C        of those sensor arrays that appear in the problem. 
C        The 1dent1cat1on vector IA produced in CONECT 1s needed to 
C        extract the correct rows from AR1. The result is AL(K,3). 
C 

0PEN(2,FILE='AR1.DAT',STATUS='0LD») 
J = 1 

17 CONTINUE 
READ(2,*,END=18)  IAR, DATE, ARNUM1, ARNUM2, ARNUM3 
GOTO 15 

18 CONTINUE 
W RIT E ( * , * ) ' Designated array number not found. ' 
WRITE(*,») ' Operation aborting. ' 
STOP 

15   CONTINUE 
IF (IAR .EQ. IA(J)) THEM 

AL(Jtl) = ARNUM1 
AL(J,2) = ARNUM2 
AL(J,3) = ARNUM3 
J = J + 1 
REWIND (2) 

ENDIF 
IF(J ,LE. K) GOTO 17 

C 
CLOSE (UNIT=2) 

C     ... Compute the displacements. 
C     ... First reduce by one the diagonal elements of each fece of E 

DO 30 KK=1,K 
DO 20 1=1,3 
DO 20 J=l,3 
BB(I,J) = B(KK,I,J) - ID(I,J) 

20   CONTINUE 
C 
C 
C     ... Complete the displacement computation: 

DO 22 1=1,3 
22   AA( I) = AL(KK, I) 

CALL MULMAKBB, AA,T) 

6 7 



DO 25 1-1,3 
DEL(KK,I)= A(KK,'I)+T(I) 

25   CONTINUE 
30   CONTINUE 

C 
C      ... Compute the length of each row of DEL. 
C 

DO 40 KK=1,K 
D(KK) = 0.D0 
DO 35 1=1,3 
D(KK) = D(KK) + (DEL(KK,I) * DEL(KK,I)) 

35   CONTINUE 
40   D(KK) = DSQRT(D(KK)) 

RETURN 
END 

SUBROUTINE MAXANG(BB,P) 
REAL*8 B(3,3)t BB(3,3), X(3), Y(3), D, P 

C 
Q ft************************************************************** 

C       *** Takes the orthonormal matrix BB as input and constructs *** 
C       *** the angle of maximal rotation that any vector can       *** 
C       *** experience under the transformation BB. *** 
C       *** Calls MULT3. *** 
C      a************************************************************** 

C 
C       ... Begin with the adjustment of the diagonal elements of E 
C in order to prepare the eigenvector problem. 
C 

DO 5 1=1,3 
DO 5 J»l,3 
B(I,J) = BB(I,J) 
IF (I .EQ. J) B(I,I) = B(I,I) - 1. 

5      CONTINUE 
C       ... Use the first two equations of the eigenvector system 
C (with X3 = 1) to solve for the eigenvector. 
C 
C       ... Compute the determinant of the coefficient matrix: 

D = B(1,1)*B(2,2) - B(1,2)*B(2,1) 
C       ... Check for zero rotation and transfer to the end 
C if it occurs. 

IF (D .EQ. 0.0) THEN 
D = -1.D0 
GOTO 30 

END IF 
C 
C       ... Set third component equal to one and solve the linear 
C system for the other two. 

X(3) = 1.D0 
X(l) = (B(1,2)*B(2,3) - B(1,3)*B(2,2))/D 
X(2) = (B(1,3)*B(2,1) - B(1,1)*B(2,3))/D 

C 
C       ... Normalize the eigenvectors. 
C 

68 



D = DSQRTd.DO + X(1)*X(1) + X(2)*X(2)> 
DO 10 1-1,3 

10     X(I) = X(I)/D 
C 
C      ... Construct a vector orthogonal to the eigenvector. 
C First choose the subscript of the smallest X. 
C 

J-l 
IF (DABS(Xd)) .ST. DABS(X<2>>) J = 2 
IF (DABS(X(J)) .GT. DABS(X(3))) J = 3 

C 
C      ... Use the Gram-Schm1dt technique to convert the direction 
C of X(J) to a direction orthogonal to Xd), X(2), X(3). 

DO 15 1=1,3 
IF (I .EQ. J) THEN 

Y(J) =  X(J)*(1.- X(J)*X(J)) 
ELSE 

Yd) = (-l.)«X(I)*X(J)*X(J) 
END IF 

15     CONTINUE 
C      ... Normalize the new vector. 

D = DSORT( Yd)*Yd) + Y(2)*Y(2) + Y(3)*Y(3) ) 
DO 20 1=1,3 

20     Yd) = Yd)/D 
C 
C       ... Transform Y by BB and compute the angle between Y and BB*Y 
C 

CALL MULMAT(BB,Y,X) 
D = 0.D0 
DO 25 1=1,3 
D = D + X(I)*Y(I) 

25     CONTINUE 
30     P = DACOS(D) 

RETURN 
END 

SUBROUTINE ANGLES(K,B,P) 
C 
Q ************************************* ***** ********* ****** 
C        *** Computes the three Euler angles for ee.cn of the   * * * 
C        *** K matrices in B. *** 
Q ********************************************************* 
C 

REAL*8 B(30,3,3),P(30,3) 
C 

DO 20 KK=1,K 
P(KK,2)=DASIN (B(KK,3,D) 
P(KK,1)=DASIN (B(KK,3,2)/DCCS (P(KK,2))) 
P(K.K,3 )=DASIN (B(KK,2,l)/DCOS (P(KK,2))) 

20     CONTINUE 
RETURN 
END 

6 9 



DISTRIBUTION LIST 

NO. OF COPIES 

Naval Undersea Warfare Engineering Station 
Code 70 
Keyport,  WA  98345 

Naval Undersea Warfare Engineering Station 
Code 50 
Keyport, WA 98345 

Center for Naval Analyses 
2000 Beauregard Street 
Alexandria,  VA 22311 

Operations Research Center, Room E40-164 
Massachusetts Institute of Technology 
Attn: R. C. Larson and J. F. Shapiro 
Cambridge,  MA  02139 

Research Administration (Code 012) 
Naval Postgraduate School 
Monterey,  CA  93943-5100 

Library (Code 0142) 
Naval Postgraduate School 
Monterey,  CA  93943-5100 

Library (Code 55) 
Naval Postgraduate School 
Monterey,  CA  93943-5100 

Professor James Esary (Code 55Ey) 
Naval Postgraduate School 
Monterey,  CA  93943-5100 

Professor Robert Read  (Code 55Re) 
Naval Postgraduate School 
Monterey,  CA  93943-5100 

20 

Professor 0. B. Wilson (Code 61W1) 
Naval Postgraduate School 
Monterey,  CA  93943-5100 

70 


